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Introduction

In this thesis we present the notion of essential dimension and give estimates for
the essential dimension of the algebraic group PGLn. Essential dimension was
introduced for finite groups by J.Buhler and Z.Reichstein in [5] and was extended
to the class of algebraic groups over algebraically closed fields by Z.Reichstein
in [25]. Later A.Merkurjev generalized it to functors in his notes [19]; we will
follow this approach.

The essential dimension of an algebraic object is a formalization of the famil-
iar concept of minimal number of ’parameters’ needed to describe it and thus
gives an idea of the complexity of its structure. Let us consider for example
the case of quadratic extensions of a field. Fix k a base field, K{k an extension
and suppose that L{K is a quadratic extension of K. If charpkq ‰ 2 the reso-
lution formula of equations of degree 2 tells us that L is generated by a square
root of an element in K, so that F “ Kpαq, where α2 “ a P K. It follows
then that the extension L{K is in fact defined on the smaller field kpaq, since
L » kpαq bkpaq K. This means that it is suffices a single parameter to describe
quadratic extensions of fields, namely that their essential dimension is at most
1. It should be noted, however, that for the extension kpt1{2q{kptq, where t is
algebraically independent over k, there is not a minimal field of definition; there
is instead a minimal value of the transcendence degree of the fields over which
it is defined, and we will take this as a measure of the complexity.

More formally, consider a functor F from the category of field extensions of a
fixed base field k to the category of sets. Let L{k an extension and a P F pLq an
element. We will say that a descends to a sub-field k Ď K Ď L if there exists an
element b P F pKq such that b is mapped to a by the map F pKq Ñ F pLq. The
essential dimension of a is the least transcendence degree among the fields to
which descends, and the essential dimension of the functor F is the supremum
of the essential dimensions of elements a P F pKq for K any extension of k.
This generality makes the notion of essential dimension very flexible since it is
applicable to many cases of interest: for example, F pKq could be the class of
isomorphism of quadratic forms on Kn, or of n-dimensional K-algebras, or of
elliptic curves defined over K, and so on. In general we think of F as specifying
the type of algebraic object we want to work with.

Essential dimension, which is defined in elementary terms, has surprising
connections to many problems in algebra and algebraic geometry. For instance,
consider the functor F that associates to the field K the classes of isomorphism
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of central simple algebras of degree n over K; for an extension L{K the maps
F pKq Ñ F pLq are given by base change. Let’s see how the essential dimension
of a central simple algebra gives important information on its structure. Recall
that a central simple algebra A{K of degree n is a crossed product if it contains
a commutative Galois sub-algebra L{K of degree n. Let us restrict to the case
in which the degree is a prime power n “ pr. In 1972 Amitsur [1] showed that
for r ě 3 a generic division algebra of degree pr is not a crossed product, solving
a long-standing open problem. For r “ 1, 2 it is not known whether or not every
central simple algebra A of degree pr is a crossed product. If the answer was
positive for the case r “ 1, that would imply that every central simple algebra of
prime degree is cyclic. If the base field contains a primitive n-th root of unity ω,
a cyclic algebra has a very simple presentation: there exist a, b P K˚ such that
it is isomorphic to the algebra generated by the symbols x and y with relations
xn “ a, yn “ b and xy “ ωyx. We see therefore that a cyclic algebra is defined
over the field kpa, bq for suitable a, b P K and consequently that its essential
dimension is at most 2. It is clear then that if every central simple algebra of
prime degree was a crossed product the essential dimension of F would be 2.
This is indeed true for p “ 2, 3: the case p “ 2 is easy and the case p “ 3
was solved by Wedderburn in 1921 [36]. The case of general p is however very
much open and the lower bounds that we present for the essential dimension of
F become trivial in this case.

This thesis is divided into four parts. In the first part we give a brief in-
troduction of the theory of central simple algebras by sketching the main facts.
Particular attention is given to crossed products and to the cohomological de-
scription of the Brauer group. We also discuss Azumaya algebras, which are a
generalization of central simple algebras to commutative rings.

In the second part, we explain the very important relation between PGLn-
torsors, Azumaya algebras and Brauer-Severi schemes, using descent theory.

In the third part we focus on general theorems about essential dimension.
We discuss versal pairs and show that in the case of a smooth algebraic groups
G, there generic fibers of torsors rising from representations are versal. This is
useful for computations and gives one of the main methods to estimate essential
dimension. We will also discuss the notion of essential p-dimension, which is
often easier to compute.

In the fourth part we give bounds of the essential dimension of PGLn. Upper
bounds are given by studying the structure of the universal division algebra,
while lower bounds rely on an important result about the essential dimension
of algebraic tori.



Notation

Here we fix the notation that will be used in the sequel.
We will usually denote by k the base field. Other fields will be denoted

by capital letters K,F,E,L and L{K will denote an extension. The category
of field extension of k with field maps fixing k is Ck. The rings we consider
are unitary, but not necessarily commutative. They will usually be denoted by
letters A, B, and D in the case of division rings; the notation Aop will denote
the opposite ring. Homomorphisms of rings are supposed to take the unit into
the unit. Modules over a ring are also unitary, meaning that 1 ¨m “ m for every
m PM and M a module. The group of nˆn matrices over a ring R is MnpRq.
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Chapter 1

Noncommutative rings

In this chapter we introduce the theory of non-commutative algebras. This is a
very well-known theory and here we will only give the basic definitions and state
the results we need, mainly without proofs. We will be particularly interested
in the case of central simple algebras, which are one of the main objects of study
in this thesis. Unless explicitly stated, rings in this section are not assumed to
be commutative. Our standard references are [13], [15] and [10].

1.1 General properties

When talking about modules we will implicitly mean right modules.

Definition 1.1.1. A module M over a ring A is simple if it is non-zero and has
no non-trivial sub-modules.

Definition 1.1.2. A division ring is a non-zero ring such that every non-zero
element has an inverse.

Modules over division rings have many of the familiar properties of vector
spaces and in particular they always admit a basis.

The following is a simple and important result known as Schur’s lemma.

Lemma 1.1.3. Let M be a simple module over a ring A. Then EndApMq is a
division ring.

Proof. See [13, Theorem 1.1.1].

Proposition 1.1.4. Consider a module M over a ring A. The following are
equivalent:
1) M is a sum of simple modules
2) M is a direct sum of simple modules
3) for any sub-module N Ď M there exists a sub-module N 1 such that M –

N ‘N 1.

9
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Proof. See [15, Theorem 2.4].

Definition 1.1.5. A module M over a ring A is semi-simple if it has one of
the equivalent properties of the previous proposition.

Definition 1.1.6. A ring is semi-simple if it is semi-simple as a right module.

Lemma 1.1.7. Quotients and sub-modules of semi-simple modules are semi-
simple.

Proof. This is an easy application of characterization (3) of semi-simplicity. In
fact, suppose that M is a semi-simple R-module, N a sub-module, and P a
quotient.

If T is a sub-module of N , it is also a sub-module of M , so that there exists a
sub-module U such that M – T‘U . It is easy then to see that N – T‘pUXNq,
which shows that N is semi-simple.

If S is a sub-module of P , consider its lifting S1 to M and take again W
such that M – S1‘W . Then W maps into a sub-module of P and P is a direct
sum of this module and S.

It is easy to see from the previous lemma that A is semi-simple as a ring if
and only if every right module is semi-simple.

Suppose now that A is semi-simple and write A – ‘jPJIj where Ij are right
ideals of A. The identity of A is expressed as a finite sum, so J is also finite.
Furthermore if we write A – A1 ‘ A2 ‘ ¨ ¨ ¨ ‘ As where we group together the
isomorphic components, the Ai are uniquely determined up to isomorphism,
they are two-sided ideals and have a ring structure such that A – A1 ˆ A2 ˆ

¨ ¨ ¨ ˆAs.

Definition 1.1.8. In the above notation, a ring A is simple if it is semi-simple
and s “ 1, that is there is only one simple right module up to isomorphism.

We want to give now a very important structure theorem for semi-simple
rings, which is due to Wedderburn. One first needs the following lemma.

Lemma 1.1.9. Let D be a division ring, V a finite dimensional D-module and
A “ EndDpV q. The natural homomorphismD Ñ EndApVAq is an isomorphism.

Proof. See [15, Theorem 3.3].

Theorem 1.1.10 (Wedderburn). Let A be any semi-simple ring. Then A –

Mn1
pD1q ˆ ¨ ¨ ¨ ˆ Mnr pDrq for suitable division rings D1, ..., Dr and positive

integers n1, ..., nr. The number r is uniquely determined, as are the pairs
pn1, D1q, ..., pnr, Drq up to permutation and isomorphism. There are exactly
r mutually non-isomorphic right simple modules over A.

Proof. See [15, Theorem 3.5].

We now introduce an important tool in the characterization of semi-simple
rings.



1.1. GENERAL PROPERTIES 11

Definition 1.1.11. Let A be a ring. The Jacobson radical of A is the intersec-
tion of all maximal right ideals; it is denoted by JpAq.

The Jacobson radical is immediately seen to be a right ideal, but in fact is
a two-sided ideal. It has many different characterizations, see for example [13],
pages 9 - 10 - 11. We will use the following.

Proposition 1.1.12. Let A be a ring. The Jacobson radical of A is the set of
elements of A such that annihilate every simple A-module.

Definition 1.1.13. A ring A is a k-algebra if there is a map of rings k Ñ A
with image contained in the center of A. We say that it is finite dimensional
algebra if it is so as a vector space over k. We say that it is central if its center
is k.

An immediate corollary of the Wedderburn theorem is the classification of
central simple algebras over algebraically closed fields.

Corollary 1.1.14. Let k be an algebraically closed field. Then every central
simple algebra is isomorphic to Mnpkq for some n.

Proof. This follows from Wedderburn’s theorem and the fact that there are no
non-trivial finite dimensional division algebras over algebraically closed fields.
See [10, Corollary 2.1.7] or [13, Lemma 2.1.5].

Theorem 1.1.15. A finite dimensional algebra A over k is semi-simple if and
only if its Jacobson radical is zero.

Proof. Suppose that A is semi-simple and write A – A1 ‘ ¨ ¨ ¨ ‘ An with each
Ai being simple. Let x P JpAq. From Proposition 1.1.12 we have that Aix “ 0
for each 1 ď i ď n, and so Ax “ 0, which means x “ 0.

Conversely, suppose that JpAq “ 0. The algebra A is finite-dimensional and
so there are only finitely many maximal right ideals: call them I1, ..., In. But
then we have that A is isomorphic to a sub-module of A{I1‘ ¨ ¨ ¨ ‘A{In, which
is semi-simple. From Lemma 1.1.7 we have that A is semi-simple.

Observe that we used the fact that A is finite dimensional only in the second
part of the proof.

From the theorem it is easy to deduce the following.

Theorem 1.1.16. A finite dimensional algebra A over k is simple if and only
if it is non-zero and has no non-trivial two-sided ideals.

Proof. Suppose that A ‰ 0 and that it has no non-trivial two-sided ideals.
Then the Jacobson radical, which is a two-sided ideal, is null and so from the
previous theorem A is semi-simple. In fact A is simple, because we can write
A – A1‘¨ ¨ ¨‘An with Ai two-sided ideals which are simple rings; the hypotheses
forces n “ 1.

On the other hand, suppose that A is simple. Suppose also that I Ď A is
a two-sided ideal such that I ‰ 0, A. The ring A is in particular semi-simple,
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so there exists a right ideal J such that A – I ‘ J as right A-modules. If V
is a simple right A-module, we have that I – V s and J “ V r. Recall that
the automorphisms of A as a right A-module are given by left multiplication of
elements of A, so that they necessarily are automorphisms of I. But from the
presentation we discussed, we can switch two copies of V in I and J with and
A-module automorphism, which is absurd. We deduce then that no I with the
supposed properties can exist.

We end this brief treatment mentioning a particular case of algebras that
arise from representations. Let G be a group and define the algebra krGs to
be the vector space spanned by linearly independent elements eg for g P G and
with multiplication given by linear extension of the rule eg ¨ eh “ egh. It is
immediate that left krGs modules correspond to G-representations. We will
need the following important classical result due to Maschke.

Theorem 1.1.17. Let G be a finite group and k a field of characteristic zero
or coprime with the order of G. Then the ring krGs is semi-simple.

Proof. See [13, Theorem 1.4.1].

1.2 Central simple algebras

We restrict our attention now to the special case of finite dimensional algebras
over a field k that are both simple and central. These are called central simple
algebras. We will not specify the base field when it is clear from the context.

From the Wedderburn theorem we know that every central simple algebra is
a matrix ring with coefficients in a division ring, but in fact much more can be
said. Let’s begin with a technical result, which is very important in the study
of central simple algebras.

Theorem 1.2.1. Let A and B be two simple algebras over k; suppose also that
A is central. Then the algebra Abk B is simple and ZpAbk Bq “ ZpBq.

Proof. See [13, Lemma 4.1.1].

In particular if bothA andB are central simple algebras, their tensor product
is also central simple over the same field, meaning that the class of central
simple algebras over a field is closed by tensor product. Moreover, if K{k is any
extension, the algebra A bk K is central simple over K, so we have a natural
extension of scalars.

If A is a central simple algebra, it is clear that so is the opposite algebra
Aop. Being this association intrinsic, it is natural from the above to investigate
the nature of Abk A

op.

Proposition 1.2.2. If A is a central simple algebra, then AbkA
op – EndkpAq.

Proof. See [13, Theorem 4.1.3].
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Definition 1.2.3. Let A be a central simple algebra over the field k. A field
K{k is a splitting field for A if AbkK is isomorphic to MnpKq for some n. We
shall also say that K splits A or that A is split over K.

It follows from Corollary 1.1.14 and Theorem 1.2.1 that an algebraically
closed field over k is always a splitting field. The dimension as a vector space is
invariant for extension of scalars, so we see that the dimension over k of every
central simple algebra is a square.

We give now two definitions that play an essential role in the theory of
central simple algebras.

Definition 1.2.4. Let A be a central simple algebra, and D a division algebra
such that A is isomorphic to MnpDq for some n. The number

a

dimkpAq is the

degree of A and the number
a

dimkpDq is the index of A.

There is an important relation between splitting fields and fields contained
in a division algebra. In fact maximal sub-fields are splitting fields, and splitting
fields of minimal degree can be embedded in the division algebra. One can ask
if there are maximal fields which have nice properties; while it is always possible
to find a separable maximal field, there are division algebras that do not admit
maximal fields that are Galois over their center. We begin with a technical
lemma.

Lemma 1.2.5. Let A be a central simple algebra and K{k a splitting field of
finite degree. Then indkpAq divides the degree of the extension.

Proof. According to the Wedderburn theorem A – MnpDq for some division
algebra D, determined up to isomorphism. Let m “ indkpAq “

?
dimkD. We

have that A bk K – MnpD bk Kq, so K is a splitting field also for D, and
DbkK –MmpKq. It follows that Km has a natural structure of left D-module
and

m ¨ rK : ks “ dimkK
m “ pdimkDq ¨ pdimDK

mq “ m2 ¨ dimDK
m

The thesis follows by rK : ks “ m ¨ dimDK
m.

Remark 1.2.6. Let D be a central simple division algebra over k and K{k be a
finite extension of degree n “ degkpDq that is also a splitting field for D. Then
dimDK

n “ 1 so that D and Kn are isomorphic as D-modules. From the fact
that D bk K –MnpKq we have that K Ď EndDpK

nq – EndDD “ D.

A converse of the remark is given by the following theorem.

Theorem 1.2.7. Let D be a finite division algebra over k. If K is a maximal
field in D containing k then the degree of the extension K{k is equal to the
degree of D and K is a splitting field for D.

Proof. See [13, Corollary and Theorem 4.2.2].
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Theorem 1.2.8. If D is a finite division algebra over k, then it admits a
separable maximal subfield over k.

Proof. See [13, Theorem 4.3.3].

Definition 1.2.9. Let A be a central simple algebra. If A contains a Galois
extension of K of degree equal to the degree of A, then A is called a crossed
product.

It has been for a long time an open question whether all algebras were crossed
products, until Amitsur gave a counterexample in 1972, [1].

A particular case of crossed products are cyclic algebras.

Definition 1.2.10. A central simple algebra over k is cyclic if contains a cyclic
extension of the center of degree equal to the degree of A.

Crossed products and in particular cyclic algebras, have a nice description of
the algebra structure. In order to obtain it, we first need an important theorem,
known as Skolem-Noether theorem.

Theorem 1.2.11 (Skolem-Noether). Let A be a central simple algebra over k
and B Ď A a simple sub-algebra over k. If f : B Ñ A is an algebra homomor-
phism, it exists an invertible element a of A such that fpxq “ axa´1 for all x
in B.

Proof. See [13, Theorem 4.3.1].

Theorem 1.2.12. Let A be a cyclic central simple algebra over k of degree n
and let K{k be a maximal sub-field cyclic of degree n over k. Then there exists
an element a P A˚ such that A – K ‘ aK ‘ ¨ ¨ ¨ ‘ an´1K as a K-vector space.

Proof. The algebra A has a K bk K-module structure given by pe b fqpxq “
exf for e, f P K and x P A. There is an isomorphism ϕ : K bk K Ñ Kn

defined as ϕpe b fq “ peσpfq, eσ2pfq, ¨ ¨ ¨ , eσn´1pfqq, where σ is a generator
of the Galois group of K over k. Consider the projections πi : En Ñ E on
the i-th component; the algebra A is then isomorphic as a K bk K-module
to ϕ´1pKerpπ1qqA ‘ ¨ ¨ ¨ ‘ ϕ´1pKerpπnqqA. A simple calculation shows that
Kerpπiq is generated over k by elements of the form σipeq b 1 ´ 1 b e, so
that calling Ai “ tx P A|such that σipeqx “ xe for all e P Ku, we have
A “ A1 ‘ ¨ ¨ ¨ ‘An.

Using the Skolem-Noether theorem, there exists an element a P A˚ such that
σpeq “ aea´1 for all e P K, so that Ai “ tx P A| a

iea´ix “ xe for all e P Ku.
It is obvious that aiK P Ai, so we conclude for dimensional reasons.

If the base field k has a primitive n-th root of unity ω then we get even
nicer presentations. Choose a, b P k˚ and define the algebra pa, bqω the algebra
generated over k by the symbols x and y with relations xn “ a, yn “ b and
xy “ ωyx. By the previous theorem and by Kummer theory, in this case every
cyclic algebra is isomorphic to the algebra pa, bqω for some a, b P k˚.
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We want to present now the important result that all division algebras of
degree 3 are cyclic. We first need to define the norm and the trace for central
simple algebras, which are tools that have independent interest.

Definition 1.2.13. Let A be a central simple algebra of degree n over k. The
norm of an element a P A˚ is the determinant of the linear map x ÞÑ ax.
Similarly one defines the trace of an element in A. The norm is a multiplicative
function, whereas the trace is additive.

Let now A be a central simple algebra of degree n and K be a splitting
field. If we choose an isomorphism f : Abk K ÑMnpKq, we can compute the
determinant and the trace of fpab1q. From Skolem-Noether these do not depend
on the chosen isomorphism, and general theory assures that their values are in
k: see for example [10] pages 37 and 38. We will call these functions reduced
norm and reduced trace and denote them by NrdA and TrdA respectively. They
are linked to the usual norm and trace by the following result.

Proposition 1.2.14. Let A be a central simple algebra of degree n, then
NA{k “ NrdnA and TrA{k “ n ¨ TrdA.

Proof. See [10, Proposition 2.6.3].

We follow the paper [12] of Haile.

Proposition 1.2.15. Let D be a central simple division algebra of degree n
over k. Let K be a maximal sub-field. Then
(1) There is an element d P D˚ such that Trdpkdq “ 0 for all k P K.
(2) Let d be as in (1). There is a k sub-space V of K such that dimkV “ n´ 1
and Trdpk´1dq “ Trdpd´1kq “ 0 for all k P V ´ t0u.

In particular there is an pn ´ 1q dimensional sub-space W of D such that
Trdpwq “ Trdpw´1q “ 0 for all w PW ´ t0u.

Proof. (1) There is a k-linear transformation U fromD toK_ given by Updqpkq “
Trdpkdq for all d P D, k P K_. The result follows comparing dimensions over
k.

(2) Given d as in (1), there is a k linear map S on K given by Spkq “
Trdpd´1kq. Since dimkKerpSq ě n´1 and by the choice of d, it suffices to take
any pn´ 1q dimensional subspace of KerpSq.

Finally it suffices to take W “ d´1V .

We remark that since the kernel of the map U in (1) has dimension at least
n2 ´ n, if n ě 3 we can take d P KerpUq and not lying in K˚.

Corollary 1.2.16. If D is a central simple division algebra of degree three over
k, then there is an element d P D ´ k such that d3 P k.

Proof. From the proposition there is an element d P D˚ such that Trdpdq “
Trdpd´1q “ 0. It follows that the minimal polynomial of d over k is of the form
x3 ´ a for some a P k˚, that is d3 P k.
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Theorem 1.2.17 (Wedderburn). Let D be a division algebra of degree 3. Then
there is an element d P D ´ k such that d3 P k. Moreover if x is any element of
D´ k such that x3 P k, then D contains a cyclic maximal subfield K such that
x P L and xLx´1 “ L.

Proof. By the corollary there is an element x P D ´ k such that x3 P k. Let
x3 “ a and K “ kpxq.

Let us first note that if U and V are two-dimensional k-subspaces of K,
then there is an element c P K such that cU “ V . In fact, there exist k-linear
functionals f and g in K_ such that U “ Kerpfq and V “ Kerpgq. Now K_ is
a one-dimensional K-space, so there exists an element c P K˚ such that cg “ f ,
and so cU “ V .

To motivate the proof of the theorem, we first observe that if there is a
cyclic maximal subfield L “ kpθq with xLx´1 “ L, then pθxq3 “ NL{kpθqa P
k since the conjugation by x gives a generator of the Galois group of L{k.
Similarly pθx2q3 P k. Conversely if there is an element θ P D ´ K such that
pθxq3, pθx2q3 P k, then L “ kpθq satisfies xLx´1 “ L and hence is our desired
extension being a cubic Galois extension. We have only to check that θ and
xθx´1 commute, because θ R K. Let Nrd : D˚ Ñ k˚ denote the reduced norm.
Because x3, pθxq3, pθx2q3 P k, it follows that Nrdpxq “ a, Nrdpθxq “ pθxq3

and Nrdpθx2q “ pθx2q3. Moreover Nrdpθx2q “ NrdpθxqNrdpxq and hence
pθx2q3 “ apθxq3. It follows that xθx2θx “ aθxθ, and so xθx´1θ “ θxθx´1.

So it suffices to find θ P D ´ K such that pθxq3, pθx2q3 P k. Now for any
y P D, we define Ky “ tc P K|Trpy´1cq “ 0u. It is easy then to see that if
c P K, then Kcy “ cKy.

By the remark following the proposition there is an element d P D ´ K
such that Trdpcdq “ 0 for all c P K. We claim there is an element c P K˚

such that Kcd Ě kx ` kx2. To see this note that either Kd “ K (in which
case the claim is proved) or rKd : ks “ 2. In this second case because Kd and
kx ` kx2 are two-dimensional subspaces of K, there is an element c P K such
that cKd “ kx ` kx2. Since cKd “ Kcd, we have proved the claim. Letting
θ “ cd, we have Trdpθxq “ Tdrppθxq´1q “ Trdpθx2q “ Trdppθx2q´1q “ 0.
Hence pθxq3, pθx2q3 P k and we are done.

Corollary 1.2.18. Every central division algebra of degree three is cyclic.

1.3 The Brauer Group

We have seen that the class of central simple algebras over k is closed under
tensor product, which is an associative and commutative operation. It is then
natural to look for a group structure in which the operation is given by the
tensor product. It is indeed the case that a proper quotient of the class of
central simple algebras is a group under tensor product. This group, which is
called Brauer group, is a very important invariant of the base field k and has
been studied extensively. One of the main properties of the Brauer group is
that it has a cohomological description, which is quite useful.
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Definition 1.3.1. Let A and B be two central simple algebras. We say that A
and B are Brauer equivalent if Abk Mnpkq – B bk Mmpkq for some n,m P N.
The set of central simple algebras modulo Brauer equivalence is called Brauer
group. We use the notation Brpkq.

As mentioned above, the group operation on Brpkq is the tensor product:
it is well-defined, associative, commutative and the inverse of an algebra is the
opposite algebra by Proposition 1.2.2. For every extension of fields K{k there is
a natural base-change map Brpkq Ñ BrpKq, which is an homomorphism. We
denote the kernel of this map by BrpK{kq, and call it the relative Brauer group.
It is clear from the definition that if A is a central simple algebra over k, then
its class in Brpkq is in the subgroup BrpK{kq if and only if A is split by K.

We want now to present the cohomological description of the Brauer group.
In order to achieve this, we have to develop a little more the theory of crossed
products. Our treatment will follow that of Herstein in [13].

Proposition 1.3.2. If A is a central simple algebra over k that is split by K,
then it is Brauer equivalent to a central simple algebra for which K is a maximal
sub-field.

Proof. We can suppose that A is a division algebra. By Lemma 1.2.5 we have
that indkpAq divides rK : ks. Taking n “ rK : ks{indkpAq, define A1 “ A bk
Mnpkq. Now recall that Remark 1.2.6 tells us that K Ď A1. Since K is a
splitting field for A1, we have the thesis.

Corollary 1.3.3. If A is a central simple algebra over k, then it is Brauer
equivalent to a crossed product.

Proof. It is always possible to find a Galois splitting field.

Now let A be a crossed product, with K maximal Galois subfield of degree n
over k. Let G be the Galois group. By Skolem-Noether, for every σ P G, there
is an element xσ P A such that σpcq “ x´1

σ cxσ for all c P K. The xσ are linearly
independent over K, so that their linear span over K is all of A for dimensional
reasons.

If σ, τ P G and c P K, then the computation x´1
τ x´1

σ cxσxτ “ pστqpcq “
x´1
στ cxστ shows that xστ pxσxτ q

´1 P K. So xσxτ “ xστfpσ, τq where fpσ, τq P
K˚ and we obtain a function f : G ˆ G Ñ K˚. If σ, τ, ν P G, a simple com-
putation yields the property fpσ, τνqfpτ, νq “ fpστ, νqνpfpσ, νqq; furthermore
xefpe, eq

´1 “ 1. We isolate these properties in the following definition.

Definition 1.3.4. Let K be a normal extension of F with Galois group G. A
function f : GˆG Ñ K˚ is called a factor set on G in K if, for all σ, τ, ν P G
we have fpσ, τνqfpτ, νq “ fpστ, νqνpfpσ, νqq.

We have seen that when we have a crossed product we can obtain a factor
set; conversely if we are give a base field k, a Galois extension K with Galois
groups G, and a factor set f on G in K, we can construct a crossed product of
which f is a factor set. In fact consider the algebra pK,G, fq which is the direct



18 CHAPTER 1. NONCOMMUTATIVE RINGS

sum of a copy of K for each element of G (with generator xσ for σ P G), with
product defined by the rules cxσ “ xσσpcq and xσxτ “ xστfpσ, τq for all c P K,
σ, τ P G. It is easy to see that pK,G, fq is indeed a central simple algebra over
k and that it is a crossed product (see [13], pag 109, for more detail). Moreover
it follows from what we have seen that any central simple algebra A is Brauer-
equivalent to an algebra pK,G, fq for some choices of K and f . We have also
proved in Proposition 1.3.2 that if K{k is a Galois extension, every class in
BrpK{kq is represented by an algebra pK,G, fq.

It is important now to address the problem of when two algebras pK,G, fq
and pK,G, gq are isomorphic. Let us begin by noticing that if we choose λσ P
K˚, the elements yσ “ xσλσ span A over K and multiply by the rule yσyτ “
yστλ

´1
στ τpλσqλτfpσ, τq. This shows that λ´1

στ τpλσqλτfpσ, τq is a factor set and
gives rise to an algebra isomorphic to A.

The converse is also true. Let ψ be an isomorphism of the k algebras pK,G, gq
and pK,G, fq, which we suppose to be generated by zσ and xσ respectively.
Then the yσ “ ψpzσq induce the automorphism σ on K in A, so that yσ “ xσλσ
for λσ P K

˚. This shows that gpσ, τq “ λ´1
στ τpλσqλτfpσ, τq.

Definition 1.3.5. Two factor sets f, g are equivalent if there exists a function
λ : GÑ K˚ such that gpσ, τq “ λ´1

στ τpλσqλτfpσ, τq for all σ, τ P G.

What we have proved is that two algebras pK,G, fq and pK,G, gq are isomor-
phic if and only if f and g are equivalent. Thanks to this fact, when studying
crossed products, we can choose a factor set f such that fpσ, eq “ fpe, σq “ 1
for all σ P G. In fact, it suffices to take λpσq “ σpfpe, eq´1q to obtain an
equivalent factor set with the desired property. If f is a factor set such that
fpσ, eq “ fpe, σq “ 1 for all σ P G we call it normalized.

If f, g are two factor sets, we can define their multiplication in the obvious
way and a calculation shows that we obtain again a factor set. Factor sets
form a group under multiplication, with unit element the factor set which is
identically 1. The factor sets that are equivalent to the unity form a subgroup
and we see that the quotient group is precisely H2pG,K˚q. We have seen that
this group is in one-to-one correspondence with the isomorphism classes of the
algebras pK,G, fq. Remark 1.3.2 and ours previous considerations tell us that
this induces a one-to-one correspondence between H2pG,K˚q and BrpK{kq.
Next we prove that we have actually an isomorphism of abelian groups.

As a first step we have the following lemma.

Lemma 1.3.6. IfK{k is a Galois extension with Galois groupG, then pK,G, eq –
Mnpkq.

Proof. See [13, Lemma 4.4.2].

We conclude by the following theorem.

Theorem 1.3.7. If K{k is a Galois extesion with Galois group G and if f, g
are factor sets then rpK,G, fqs ¨ rpK,G, gqs “ rpK,G, fgqs in Brpkq.

Proof. See [13, Theorem 4.4.3].
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Finally we have obtained the cohomological description of the Brauer group.

Theorem 1.3.8. Let k be a field and K{k a Galois extension with group G.
Then Brpkq – H2pkq and BrpK{kq – H2pG,K˚q.

We conclude this section on the Brauer group by stating some important
results that are obtained thanks to the theorem.

Theorem 1.3.9. The Brauer group is a torsion group.

Proof. See [13, Theorem 4.4.4] and [10, Theorem 4.4.8].

Definition 1.3.10. The period of a central simple algebra is the order of its
associated element in the Brauer group.

There is an important relationship between index and period.

Theorem 1.3.11. Let A be a central simple algebra over k. Then its period
divides its index, and they have the same prime factors.

Proof. See [10, Proposition 4.5.13] or [13, Corollary], page 121.

Theorem 1.3.12 (Brauer). LetD be a central division algebra over k. Consider
the primary decomposition indkpDq “ pm1

1 ¨ pmrr . Then we may find central
division algebras Di for 1 ď i ď r such that

D – D1 bk D2 bk ¨ ¨ ¨ bk Dr

and indkpDiq “ pmii . Moreover, the Di are uniquely determined up to isomor-
phism.

Proof. See [10, Theorem 4.5.16] or [13, Theorem 4.4.6].

1.4 Azumaya algebras

In this section we will give a very brief introduction to the theory of Azumaya
algebras, which are a generalization of central simple algebras to rings. They
were first studied over local rings by Azumaya [3] and then over arbitrary rings
by Auslander and Goldman [2]. Our main references are [23] and [14].

Let us begin with the local case. Fix R a local ring with maximal ideal m
and A a not necessarily commutative algebra over R.

Definition 1.4.1. We say that A is an Azumaya algebra over R if it is free of
finite rank as an R-module and if the map AbR A

op Ñ EndRpAq sending ab b
to the endomorphism x ÞÑ axb is an isomorphism.

Proposition 1.4.2. Let A be an Azumaya algebra over R. Then A has center
R; moreover, for any ideal I of A, I ÞÝÑ I X R gives a bijection between the
ideals of A and those of R.
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Proof. See [23, IV, Proposition 1.1].

It follows from the previous Proposition that an Azumaya algebra over a
field is a central simple algebra, and from Proposition 1.2.2 we see that in fact
the converse is also true.

Proposition 1.4.3. If A is an Azumaya algebra over R and R1 is a commutative
local R algebra, then AbR R

1 is an Azumaya algebra over R1. Furthermore, if
B is free of finite rank as an R-module and B bR R{m is an Azumaya algebra
over R{m, then B is an Azumaya algebra over R.

Proof. See [23, IV, Proposition 1.2].

Corollary 1.4.4. If A and A1 are Azumaya algebras over R, then AbRA
1 is an

Azumaya algebra over R. Furthermore, the matrix ring MnpRq is an Azumaya
algebra over R.

Proof. Both statements follow from the previous Proposition and the corre-
sponding statement for central simple algebras.

We have a generalized Skolem-Noether theorem for Azumaya algebras in the
local case.

Theorem 1.4.5 (Skolem-Noether). Let A be an Azumaya algebra over R, then
every automorphism of A as an R-algebra is inner.

Proof. See [23, IV, Proposition 1.4].

Corollary 1.4.6. The automorphism group of MnpRq as an R algebra is
PGLnpRq “ GLnpRq{R

˚.

Proof. The algebra MnpRq is Azumaya over R and its units are GLnpRq.

We now are ready to approach the global case. From now on, R is a com-
mutative ring and A is a R-algebra.

Definition 1.4.7. We say that A is an Azumaya algebra over R if it is finitely
presented and for every localization at a maximal ideal m of R, we have that
Am is an Azumaya algebra over Rm in the previous sense.

Proposition 1.4.8. The following are equivalent:
1) A is an Azumaya algebra over R
2) A is finitely presented and for every localization at a prime ideal p of R, we
have that Ap is an Azumaya algebra over the local ring Rp
3) A is a faithfully projective R-module such that the canonical map AbRA

op Ñ

EndRpAq is an isomorphism.

Proof. It follows from Proposition 1.4.3, [14, Théorème 5.1] and [14, Lemme
5.2].

Definition 1.4.9. We say that an R-algebra R1 splits an Azumaya algebra A
if AbR R

1 –MnpR
1q.
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We have seen that central simple algebras are split by a finite extension of
their center. In fact a maximal subfield is always a splitting field. These results
generalize to Azumaya algebras.

Proposition 1.4.10. For every maximal commutative sub-algebra S of an Azu-
maya algebra A over R, the product of A induces an isomorphism A bR S –
EndSpAq, where A is considered as an S-module by right multiplication.

Proof. See [14, Proposition 6.1].

Proposition 1.4.11. Let R be a local ring and A an Azumaya algebra over
R. Then A has a maximal commutative sub-algebra S such that A is a free
S-module.

Proof. See [14, Théorème 6.4].

From the previous results, we can finally deduce the following important
theorem.

Theorem 1.4.12. Let A be an R-algebra. The following are equivalent:
1) A is an Azumaya algebra over R
2) for every p P SpecpRq there is a finitely generated free Rp algebra that splits
Ap
3) for every p P SpecpRq there exist f P R ´ p and a finitely generated free Rf
algebra that splits Af
4) There exists an etale and faithfully flat R-algebra that splits A

Proof. See [14, Théorème 6.6].

Proposition 1.4.13. Every endomorphism of an Azumaya algebra is an auto-
morphism.

Proof. Being an isomorphism is a local property, and in the local case the thesis
follows from Skolem-Noether. For a different point of view see [14, Corollaire
5.4].

Proposition 1.4.14. Let A be an Azumaya algebra over R. The group

AutRpAq{IntpAq

is torsion.

Proof. See [14, Corollaire 3.2].

Let us conclude this section with a remark on the Brauer group of a ring,
which we can define in analogy with the field case. Two Azumaya algebras A1

and A2 are called Brauer equivalent if there exist two faithfully projective R-
modules P1 and P2 such that A1 bR EndRpP1q – A2 bR EndRpP2q. The class
of Azumaya algebras over R modulo Brauer equivalence has an abelian group
structure, called Brauer group. If S is an R-algebra we have a base-change map
BrpRq Ñ BrpSq.
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Chapter 2

Descent theory

In this chapter we assume that the reader is familiar with descent theory and
Groethendick topologies. Our references are [34] and [23]. We shall also use
some basic concepts for group schemes, as in [35].

The aim here is to use descent theory to relate central simple algebras to
PGLnpkq-torsors and Brauer-Severi varieties.

2.1 Projective linear group scheme

Definition 2.1.1. The fppf topology on the category Sch{S of S-schemes is
the topology in which the coverings tUi Ñ Uu of an object U consist of jointly
surjective collections of flat maps locally of finite presentation.

We call the category of affine schemes and scheme morphisms Aff . This
is a subcanonical site with the fppf topology by [34, Theorem 2.55]. Let GLn
be the functor Aff Ñ Grp such that GLnpSq “ GLnpΓpS,OSqq for all affine
schemes S. Then GLn is represented by the group scheme

GLn,Z “ Specp
ZrT11, ..., Tnn, T s

TdetpTij ´ 1q
q

and so defines a sheaf on Aff . The group scheme GL1,Z is just Gm.
Consider now the functor F : Aff Ñ Grp defined by

F pSq “ GLnpΓpS,OSqq{ΓpS,OSq
˚

and its Zariski sheafification F̃ . We want to show that F̃ is representable by an
affine group scheme, which we call projective linear group.

Let PGLn be the functor Aff Ñ Grp such that PGLnpSq “ AutSpMnpSqq.
It is easy to see that PGLn is representable: indeed any automorphism of
MnpSq as an S-algebra may be regarded as an endomorphism of MnpSq as an S
module and thus PGLn is a subfunctor of Mn2 . Futhermore, the condition that
an endomorphism be an automorphism of algebras is described by polynomials,

23
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and hence PGLn is represented by a closed subscheme of Mn2 , which we call
PGLn,Z. Thus PGLn is also a sheaf for the fppf topology.

Proposition 2.1.2. The functors F̃ and PGLn are isomorphic.

Proof. We have a natural transformation F Ñ PGLn, such that if U P F pSq
then U ÞÑ ϕU , where ϕU pXq “ UXU´1. Since PGLn is a sheaf, this nat-
ural transformation factors through F̃ , and we want to show that this is an
isomorphism.

Let S be an affine scheme. Then every automorphism of MnpSq as an S-
algebra is locally in the Zariski topology inner by the Skolem-Noether theorem
in the local case. It follows that there is a Zariski cover Ui of S such that
the restrictions of the automorphism to the Ui is in the image of F pUiq Ñ
PGLnpUiq, hence the surjectivity is proved.

The proof of the injectivity is analogous. Let a P F̃ pSq an element that goes
to the identity. By the definition of sheafification, there exists a fppf cover Ui
of S such that the restrictions of a to Ui are in the image of F pUiq Ñ F̃ pUiq.
But then these restrictions are in fact in ΓpUi, OUiq

˚ since MnpΓpUi, OUiq has
center ΓpUi, OUiq. Then they are trivial in F pUiq, and by the properties of the
sheafification, a is trivial.

In fact we have also proved the following.

Corollary 2.1.3. The sequence

1 Ñ Gm Ñ GLn Ñ PGLn Ñ 1

is exact as a sequence of sheaves for the Zariski topology.

2.2 Equivalence

Consider the site of affine schemes Aff with the fppf topology. Consider now the
category whose objects are pairs pA,Rq, where R is a ring and A is an Azumaya
algebra over R of rank n. The morphisms from a pair pA,Rq to pB,Sq are maps
of rings AÑ B and RÑ S such that the diagram

R ÝÝÝÝÑ S
§

§

đ

§

§

đ

A ÝÝÝÝÑ B

is commutative. Let us call this categoryAzmpnq. It is immediate thatAzmpnqop

is fibered over Aff with respect to the functor that associates SpecpRq to pA,Rq,
the fibered product of SpecpSq Ñ SpecpRq with A being A bR S. In fact this
category is fibered in grupoids, since we have seen that every endomorphism of
and Azumaya algebra is an automorphism.

Next, let us consider the category of PGLn-torsors over affine schemes. An
object in this category is a PGLn,R-torsor T Ñ SpecpRq for the fppf topology.
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By descent theory every such T is affine: see for example [23, I, Theorem 2.23].
The morphisms of this category are again commutative diagrams

U ÝÝÝÝÑ T
§

§

đ

§

§

đ

SpecpSq ÝÝÝÝÑ SpecpRq

such that the map U Ñ T is PGLn,R invariant. We call this category BPGLn,
and it is easy to see that it is fibered in grupoids over Aff .

We shall introduce one more category, but first we need the following defi-
nition.

Definition 2.2.1. A Brauer-Severi scheme of rank n over the affine scheme
S is a scheme P over S such that there exists a flat surjective locally of finite
presentation map S1 Ñ S for which P ˆS S

1 is isomorphic to the projective
space of dimension n´ 1 over S1.

Consider the category whose objects are pairs pP,Xq where X is an affine
scheme, and P is a Brauer-Severi scheme of rank n over S. As usual morphisms
are maps

Q ÝÝÝÝÑ P
§

§

đ

§

§

đ

SpecpSq ÝÝÝÝÑ SpecpRq

such that the diagram is commutative. This is a fibered category over Aff .
We restrict our attention to the subcategory whose morphisms are cartesian
diagrams, which is fibered in grupoids. We call this subcategory BSpnq.

Finally we can state the main result, of which we only sketch the proof.

Theorem 2.2.2. The fibered categories Azmpnqop, BPGLn and BSpnq are
equivalent.

Let us begin by constructing a morphism of fibered categories F : Azmpnq Ñ
BPGLn. Consider an Azumaya algebra A over the ring R. We associate to A the
functor IA : Aff{SpecpRq Ñ Sets, which is defined by putting IApSpecpSqq “
IsoSpMnpSq, A br Sq, that is the set of S-isomorphisms between the matrix
algebra MnpSq and Abr S. The functor IA has a natural PGLn,R right action,
given by matrix multiplication. Locally in the Zariski topology an Azumaya
algebra is split by an algebra that is a free module over its center, so locally in
the fppf topology Azumaya algebras are matrix algebras. From this it follows
that the functor IA is a PGLn,R-torsor in the fppf topology. Then an application
of descent theory shows that IA is representable in Aff{SpecpRq by an affine
scheme TA: see [23, III, Theorem 4.3] or [34, Theorem 4.33]. We define F pAq “
TA. If f : AÑ B and g : RÑ S is a morphism in Azmpnq between pA,Rq and
pB,Sq, we can restrict IA to the category Aff{SpecpSq, where is is represented
by TA ˆSpecpRq SpecpSq. The map f extends to a map fS : A bR S Ñ B



26 CHAPTER 2. DESCENT THEORY

which is necessarily an isomorphism. Then there is an isomorphism TB Ñ

TAˆSpecpRqSpecpSq, which gives a morphism in BPGLn. Thus we have defined
F on objects and morphisms; it is immediate that F is a morphism of fibered
categories.

Conversely, we want to show that from a PGLn-torsor we can get an Azu-
maya algebra. Let SpecpAq Ñ SpecpRq be a PGLn,R-torsor. On SpecpAq
we can consider the quasi-coherent sheaf of algebras defined by the A-algebra
MnpAq. Of course, MnpAq is an Azumaya algebra over A. We want to give
MnpAq the structure of a PGLn,A invariant object, and to do so we must first
give an action. This is the same as giving MnpAq the structure of a PGLn,A
comodule. Let PGLn,R “ SpecpCq. Since SpecpAq is a PGLn,R-torsor, we
have a map of R-algebras ρ : AÑ AbR C that corresponds to the action. We
have another map p : A Ñ A bR C that corresponds to the second projection
PGLn,R ˆSpecpRq SpecpAq Ñ SpecpAq, and is defined by ppaq “ a b 1. The
map ρ̃ : MnpAq Ñ MnpAq bR C given by ρ defines a PGLn,A-comodule. In
fact this defines the required structure of invariant object by [34, Proposition
3.49]. The fibered category Azmpnq is a stack in the fppf topology due to [34,
Theorem 4.23] and an easy generalization of [34, Theorem 4.29]. Then descent
theory along torsors gives us an Azumaya algebra MA over R; it is obvious
that this association is functorial. The algebra MA is characterized as being
the sub-algebra of MnpAq where ρ̃ and p̃ coincide. This can also be described
as the algebra of invariants of the action of PGLn,A on MnpAq. We leave to
the reader to verify that the two functors we defined are one the inverse of the
other, so that Azmpnqop and BPGLn are indeed equivalent categories.

Let us show now that BPGLn and BSpnq are also equivalent. We start with
the functor BSpnq Ñ BPGLn, which is analogous to the functor Azmpnqop Ñ
BPGLn. If P Ñ SpecpRq is a Brauer-Severi scheme, consider the functor IP :
Aff{SpecpRq Ñ Grp such that IP pSpecpSqq “ IsoSpecpSqpPn´1

S , P ˆSpecpRq
SpecpSqq. This functor is a fppf sheaf and has a right PGLn,R action. Locally in
the fppf topology, this action is trivial, since the automorphisms of the projective
space are the projectivisation of the linear group. Then IP is a PGLn torsor,
hence representable by an affine scheme.

Conversely, now we construct a functor BPGLn Ñ BSpnqop. Consider a
PGLn,R-torsor SpecpAq Ñ SpecpRq. We have a right action of PGLn,R on
Pn´1
R ˆSpecpRq SpecpAq “ Pn´1

A . The class of maps from Brauer-Severi schemes
to their bases is made of flat proper morphisms of finite presentation since they
are so in a fppf cover; see Vistoli 2.36 and [11, IV.17.16.3]. They are also clearly
local in the fppf topology. Then [34, Theorem 4.38] and [34, Proposition 4.20]
tell us that the category BSpnq is a stack for the fppf topology and by descent
theory we obtain a Brauer-Severi scheme PA Ñ SpecpRq.

This completes the sketch of proof of the theorem. We will be particularly
interested in the study of central simple algebras, and so we will restrict our
attention to the full subcategory of Aff given by fields. Brauer-Severi schemes
over a field are called Brauer-Severi varieties, and they are split by a finite field
extension.
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Remark 2.2.3. Recall that if f : Y Ñ X is smooth and surjective and X is
quasi-compact, then there exists an affine scheme X 1, a surjective étale mor-
phism h : X 1 Ñ X and an X-morphism g : X 1 Ñ Y : see [11, IV.17.16.3] It
follows that if G is a smooth group scheme, then G-torsors for the fppf and étale
topology are the same. From the preceding discussion we deduce then that in
fact Brauer-Severi schemes are split by an étale surjective map.

Remark 2.2.4. Brauer-Severi schemes have one more characterization, which
we only state. Let P Ñ S be a proper flat locally of finite presentation map,
and suppose also that the geometric fibers are projective spaces of rank n´ 1.
Then P is a Brauer-Severi scheme.

2.3 Cohomology

We are going to show that from the preceding discussions one can recover the
cohomological description of the Brauer group.

Consider a site C, an object X in C and a covering U “ pUi
φi
Ñ XqiPI . For

any pp`1q-tuple pi0, ..., ipq with the ij in I we write Ui0ˆX ¨ ¨ ¨ˆX Uip “ Ui0¨¨¨ip .
Let P be a presheaf on C. The canonical projection

Ui0¨¨¨ip Ñ Ui0¨¨¨̂ij ¨¨¨ip “ Ui0 ˆ ¨ ¨ ¨ ˆ Uij´1
ˆ Uij`1

ˆ ¨ ¨ ¨ ˆ Uip

induces a restriction morphism

P pUi0¨¨¨̂ij ¨¨¨ipq Ñ P pUi0¨¨¨ipq

which we write as resj . Define a complex

C‚pU , P q “ pCppU , P q, dpqp

as follows:

CppU , P q “
ź

Ip`1

P pUi0¨¨¨ipq

and dp : CppU , P q Ñ Cp`1pU , P q is the homomorphism such that if s “
psi0¨¨¨ipq P C

ppU , P q, then

pdpsqi0¨¨¨ip`1
“

p`1
ÿ

j“0

p´1qjresjpsi0¨¨¨̂ij ¨¨¨ip`1
q

It is easy to see that this is indeed a complex. The cohomology groups
of pCppU , P q, dpq are called Cech cohomology groups of P with respect to the
covering U of X, and are denoted as ȞppU , P q.

A second covering V “ pVj
ψj
Ñ XqjPJ is called a refinement of U if there is a

map τ : J Ñ I such that for each j, ψj factors through φτj , that is, ψj “ φτjηj
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for some ηj : Vj Ñ Uτj . The map τ , together with the family pηjq, induces
maps τp : CppU , P q Ñ CppV, P q as follows: if s “ psi0¨¨¨ipq P C

ppU , P q, then

pτpsqj0¨¨¨jp “ resηj0ˆ¨¨¨ˆηjp psτj0¨¨¨τjpq

These maps τp commute with d and hence induce maps on the cohomology

ρpV,U , τq : ȞppU , P q Ñ ȞppV, P q

Lemma 2.3.1. The map ρpV,U , τq does not depend on τ of the ηj .

Proof. See [23, III, Lemma 2.1].

Hence, if V is a refinement of U , we get a homomorphism ρpV,Uq : ȞppU , P q Ñ
ȞppV, P q depending only on V and U . It follows that if U , V,W are three cov-
erings of X such that W is a refinement of V and V is a refinement of U , then
ρpW,Uq “ ρpW,VqρpV,Uq. Thus we may define the Cech cohomology groups
of P over X to be ȞppX,P q “ lim

ÝÑ
ȞppU , P q, where the limit is taken over all

coverings U of X.
Consider a category with a terminal object X.

Proposition 2.3.2. To any exact sequence of sheaves of groups

1 Ñ G1 Ñ GÑ G2 Ñ 1

there is associated an exact sequence of pointed sets

1 Ñ G1pXq Ñ GpXq Ñ G2pXq
d
Ñ Ȟ1pX,G1q Ñ Ȟ1pX,Gq Ñ Ȟ1pX,G2q

Proof. The map d is defined as follows: let g P G2pXq, and let pUi Ñ Xq
be a covering of X such that there exist gi P GpUiq that map to g|Ui under
GpUiq Ñ G2pUiq; then

dpgqij “ pgi|Uij q
´1pgj |Uij q

The other maps are obvious and the checks that have to be done are routine.

Let G be a group sheaf and S a torsor for G. Let pUi Ñ Xq be a cover that
trivializes S and choose si P SpUiq for every Ui. Then there is a unique gij P
GpUijq such that psi|Uij qgij “ psj |Uij q. Note that pgijq is a 1-cocycle, and that
if the choice of the si is changed, then g “ pgijq is replaced by a cohomologous
cocycle. Also the cohomology class in unaltered if S is replaced by an isomorphic
torsor or another covering. Thus S defines an element cpSq P Ȟ1pX,Gq.

Proposition 2.3.3. The map S ÞÑ cpSq defines a one-to-one correspondence
between isomorphism classes of sheaf torsors for G and elements of Ȟ1pX,Gq
under which the trivial class corresponds to the distinguished element.
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Proof. We construct the inverse mapping. Let U “ pUi Ñ Xq be a cover-
ing of X, and let C0

pU , Gq and C1
pU , Gq be the sheaves V ÞÑ

ś

iGpUi ˆ V q,
V ÞÑ

ś

i,j GpUij ˆ V q. These are sheaves because, for example, C0
pU , Gq “

ś

π˚pG|Uiq, where πi are the maps Ui Ñ X. Let d : C0
Ñ C1 be the mapping

phiq Ñ ph´1
i hjq. Now fix a 1-cocycle g for G relative to U . For any V , g re-

stricts to an element g|V of ΓpV,C1
pU , Gqq, and we define S to be the subsheaf

of C0
pU , Gq such that ΓpV, Sq is in the inverse image of g|V for any V . There is

an obvious right action of G on S, namely ppsiq, gq ÞÑ pg´1siq. Suppose now that
g is the trivial cocycle, that is gij “ pgi|Uij q

´1pgj |Uij q for some pgiq P
ś

iGpUiq.
Then the map GÑ S that sends a section h of G over V to ph´1|VˆUiqpgi|VˆUiq
is an isomorphism that commutes with the action of G. Since g becomes trivial
on each Ui, and the definition of S commutes with restriction, this shows that
S|Ui – G|Ui , that is, S is a G-torsor. Finally one checks that the 1-cocycle cor-
responding to S is the original cocycle g and conversely that the torsor defined
by the cocycle obtained by a given torsor, is isomorphic to the given torsor.
This shows there is a one-to-one correspondence between isomorphism classes
of torsors that become trivial on a given covering U and elements Ȟ1pU , Gq.
Passing to the limit we obtain the thesis.

Corollary 2.3.4. Let G be an affine group scheme. There is a canonical bijec-
tion between the set of fppf G-torsors over a base scheme X modulo isomorphism
and Ȟ1

fppf pX,Gq. If G is a smooth they are also in bijective correspondence

with Ȟ1
etpX,Gq.

Proof. The firs part is a consequence of the Proposition and the fact that fppf
G-torsors are representable. For the second part, we already remarked that if
the groups is smooth, then fppf torsors are the same as étale torsors.

Recall now the exact sequance of étale sheaves

1 Ñ Gm Ñ GLn,R Ñ PGLn,R Ñ 1

in the category Aff{SpecpRq.

Theorem 2.3.5. There is a canonical injective homomorphism

BrpRq Ñ H2
etpSpecpRq,Gmq

Proof. We have shown in Theorem 2.2.2 that Azumaya algebras over R are in
correspondence with PGLn,R torsors in the fppf topology. Then it follows from
Corollary 2.3.4 that they are also in correspondence with Ȟ1

etpSpecpRq, PGLn,Rq.
Furthermore, by descent theory for quasi-coherent sheaves, the set Ȟ1

etpSpecpRq, GLn,Rq
is in correspondence with the set of isomorphism classes of locally free mod-
ules of rank n over R. Let us show that the map Ȟ1

etpSpecpRq, GLn,Rq Ñ
Ȟ1
etpSpecpRq, PGLn,Rq sends an R module to the module of its endomorphisms.

Let E be an R-module and U “ pUiq a Zariski covering of SpecpRq that trivi-
alizes E through maps φi. Then E correponds to the 1-cocycle pφ´1

i φjq. Con-
sider A “ EndRpEq and the isomorphisms ψiMnpRiq Ñ EndRipEiq, where
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ψipaq “ φiaφ
´1
i . Thus A corresponds to the 1-cocycle pψ´1

i ψjq “ pαijq, where
αijpaq “ φ´1

i φjaφ
´1
j φi. This is in the image of pφ´1

i φjq because the map
GLn,Ri Ñ PGLn,Ri maps u to the automorphism of MnpRiq given by con-
jugation by u.

There is a an exact sequence of pointed sets

Ȟ1
etpSpecpRq,Gmq Ñ Ȟ1

etpSpecpRq, GLn,Rq Ñ Ȟ1
etpSpecpRq, PGLn,Rq

d
Ñ

d
Ñ Ȟ2

etpSpecpRq,Gmq

The first part is just the exact sequence of Proposition 2.3.2. We can continue
that exact sequence because Gm is in the center of GLn,R. The map d is defined
as follows: let γ P Ȟ1

etpSpecpRq, PGLn,Rq be represented by a cocycle pcijq for
the covering pUiq. After refining pUiq, we may assume that each cij is in the
image of an element c1ij P ΓpUij , GLn,Rq; the dpγq is the class of the 2-cocycle
paijkq where

aijk “ c1jkpc
1
ikq
´1c1ij P ΓpUijk,Gmq

Moreover, dpcpAbRA
1qq “ dcpAqdcpA1q, where cpAq denotes the class in Ȟ1

etpSpecpRq, PGLn,Rq
of an Azumaya algebra A. The verification of the exactness and the other state-
ments are routine.

Thus we have obtained an injective homomorphism

BrpSpecpRqq Ñ Ȟ2
etpSpecpRq,Gmq

By Milne Theorem 2.17 there is a canonical isomorphism Ȟ2
etpSpecpRq,Gmq Ñ

H2
etpSpecpRq,Gmq, and so we have concluded.

Corollary 2.3.6. If k is a field, Brpkq Ñ H2pk, k˚q is an isomorphism.

Proof. This follows from [23, IV, Corollary 2.12] and the fact that for fields étale
cohomology is the same as Galois cohomology.



Chapter 3

Essential dimension

In this chapter we are finally going to talk about essential dimension. We will
study its basic properties, following [4]. For a more complete point of view on
the subject, see the introductory papers [26] and [21].

3.1 General properties

Fix a base field k. We denote by Ck the category of field extensions of k, with
morphism field maps that fix k. Let F : Ck Ñ Sets be a functor.

Definition 3.1.1. Let a P F pKq, with K{k a field extension. We say that a is
defined over an intermediate field k Ď E Ď K if there is an element b P F pEq
such that F pE Ñ Kqpbq “ a.

Definition 3.1.2. If a P F pKq with K{k a field extension, we define the es-
sential dimension of a as edpaq “ min trdegpE : kq, where E runs over the
extensions of k over which a is defined.

Definition 3.1.3. The essential dimension of F is the supremum of edpaq for
all a P F pKq and all the extensions K{k.

Let us show some examples. First consider the trivial functor F such that
F pKq “ S for every K, where S is a fixed non-empty set. It is clear that the
essential dimension of F is zero, since every element of F pKq is defined over
k. Next, consider the forgetful functor F such that assigns to each field its
underlying set. If a is an element in F pKq, then the essential dimension of a is
zero if it is algebraic, one otherwise. It is clear then that edkpF q “ 1. Finally,
fix an integer n and a set S “ ta, bu with a ‰ b. Define the functor F on an
extension K{k to be tau if trdegpK : kq ă n, and S otherwise. The essential
dimension of F is n, and this shows that the essential dimension of a functor
can be arbitrary large.

Now we study the behavior of essential dimension with respect to elementary
operations on functors.

31
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Definition 3.1.4. Let k1{k be a field extension and consider the natural functor
G : Ck1 Ñ Ck. For a functor F : Ck Ñ Sets, we define Fk1 to be the functor
F ˝G.

Proposition 3.1.5. If k1{k is a field extension, then edk1pFk1q ď edkpF q.

Proof. If edkpF q “ 8, the results is obvious. Let edkpF q “ n. Take K{k1

a field extension and a P F pKq. There is a subextension k Ď E Ď K with
trdegpE : kq ď n such that a is in the image of the map F pEq Ñ F pKq. The
composite extension E1 “ Ek1 then satisfies trdegpE1 : k1q ď n and a is in the
image of the map F pE1q Ñ F pKq. Thus edpaq ď n and edk1pFk1q ď n.

Proposition 3.1.6. Let f : F Ñ G be a surjection of functors. Then edpGq ď
edpF q.

Proof. Let K{k be an extension and b P GpKq. By surjectivity, there is an
element a P F pKq such that fKpaq “ b. Suppose that edpF q “ n and take
a subextension k Ď E Ď K such that trdegpE : kq ď n and such that a P
impF pEq Ñ F pKqq. The thesis now follows from the naturality of f .

Proposition 3.1.7. Let F and G be two functors. Then, if we still denote by
X the functor it represents, edpF ˆGq ď edpF q ` edpGq.

Proof. Consider K{k a field extension and pa, a1q P F pKq ˆ GpKq. Take two
extensions k Ď E Ď K and k Ď E1 Ď K with trdegpE : kq ď edpF q and
trdegpE1 : kq ď edpGq, such that a and a1 come from F pEq and GpE1q. This
means that exist b P F pEq and b1 P GpE1q such that bK “ a and b1K “ a1. Now
take L “ EE1 and notice that pbL, b

1
Lq maps to pa, a1q. The thesis follows from

trdegpEE1 : kq ď trdegpE : kq ` trdegpE1 : kq.

Proposition 3.1.8. Let X be a scheme locally of finite type over k. Then
edpXq “ dimpXq.

Proof. Every point p P XpKq has least field of definition kppq, so edpXq “
supp trdegpkppqq “ dimpXq.

Definition 3.1.9. Let F be a functor. A classifying scheme of F is a locally
of finite type k-scheme X such that there is a surjection X Ñ F .

Corollary 3.1.10. If X is a classifying scheme of F then edpF q ď dimpXq.

3.2 Essential p-dimension

Let F : Ck Ñ Sets be a functor, K{k a field extension, x P F pKq and K0 a
field extension of k. We say that x is p-defined over K0 if there are morphisms
K0 Ñ K 1 and K Ñ K 1 in Ck for some field K 1{k and an element x0 P F pK0q

such that K 1{K is a finite extension of degree prime to p and px0qK1 “ xK1 in
F pK 1q. We define the essential p-dimension of x as edppxq “ min trdegkpK0q,
where the minimum is taken over all fields of p-definition K0 of x. The essential
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p-dimension of the functor F is edppF q = sup edppxq, where the supremum runs
over all field extensions K{k and all x P F pKq.

Remark 3.2.1. It follows from the definition that edppxq “ min edpxLq, where
L runs over all finite and prime to p extensions of K. In particular, for every p,
we have that edppF q ď edpF q.

Remark 3.2.2. The general properties proved above hold also in the case of
the essential p-dimension.

Essential p-dimension is in some sense the ’local’ version of essential dimen-
sion. Most of the existing methods for proving lower bounds on the essential
dimension are in fact well suited for problems that are not sensitive to prime-to-
p extensions, and thus for computations the essential p-dimension. On the other
hand most of the difficult and important problems are sensitive to prime-to-p
extensions. For instance, it is not known if every division algebra of prime de-
gree is a crossed product, however every such algebra becomes a crossed product
after a prime-to-p extension of its center: see Rowen and Saltman [31].

3.3 Essential dimension of algebraic groups

In this section we are going to define the essential dimension of algebraic groups,
that are group schemes of finite type over a base field k. This definition is due to
Reichstein, who first introduced it in [25]. The definition is given using Galois
cohomology, for which the standard reference is Serre’s book [33]. See also [10]
for a more elementary introduction.

Definition 3.3.1. Let G be an algebraic group. The essential dimension of
G is defined as edkpGq “ edkpH

1p´, Gqq.

The functor H1p´, Gq : Ck Ñ Sets is the first Cech cohomology group of
GalpKs,Kq with values in GpKsq. This group is the same as the first Cech
cohomology group for G in the étale topology on Ck, which we have seen to
describe the isomorphism classes of G-torsors on Specpkq. In the case G “

PGLn,k we have seen that the functor of torsors is isomorphic to the functor of
central simple algebras and that of Brauer-Severi varieties. Thus the essential
dimension of PGLn,k is precisely the object of study of this thesis.

Remark 3.3.2. Since the object of interest of the thesis is the projective linear
group, in the sequel we shall always assume that the algebraic groupG is smooth.

Now we give some simple examples.

Example 3.3.3. Consider the affine group GLn,k. Using descent theory the
same way we did for PGLn,k we see that the groups H1pK,GLn,kq classify
vector spaces that become isomorphic in a finite extension of K. Clearly two
such vector spaces are already isomorphic over K since dimension is a com-
plete invariant, so H1pK,GLn,kq “ 0 for every K{k. This fact is known as
Hilbert Theorem 90. Of course, this shows that edkpGLn,kq “ 0. In particular,
edkpGmq “ 0.
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Example 3.3.4. Consider the affine group SLn,k. We have an exact sequence
in the étale topology

1 Ñ SLn,k Ñ GLn,k Ñ Gm Ñ 1

Taking the exact sequence in cohomology we see that H1pK,SLn,Kq “ 0 for
every K, so that edkpSLn,kq “ 0.

Example 3.3.5. Consider now the finite constant group scheme Sn over k.
This is the functor group of automorphisms of the k-algebra kn. We remark
here that if K{k is a Galois extension with group G, then SpecpKq Ñ Specpkq
is a G torsor for the étale topology. Thus by descent along torsors, H1pk, Snq
classifies the set of isomorphism classes of commutative k-algebras A such that
there exists a finite Galois extension K{k with AbkK – Kn. These are precisely
the étale algebras. The essential dimension of Sn is unknown, but it has been
proved by Buhler and Reichstein in [5] that tn{2u ď edkpSnq ď n´ 3 for n ě 5.

Definition 3.3.6. Let C be a category, G a functor C Ñ Grp and F a functor
C Ñ Sets. We say that G acts freely on F if the action of GpXq on F pXq is
free for every object X. If C “ Sch{S, G is a group object in Sch{S and X is
an S-scheme, we say that G acts freely on X if GpT q acts freely on XpT q for
every S-scheme T .

There is a geometric interpretation of the definition of free action. Consider
G a group scheme over S and X a scheme over S. Let x P X be a point. The
scheme-theoretic stabilizer of x is the pull-back of the diagram

GˆS x
§

§

đ

Specpkpxqq ÝÝÝÝÑ X

where the vertical map is the composite G ˆS x Ñ G ˆS X Ñ X. We denote
it by Gx; it is a group scheme over Specpkpxqq and is a closed group subscheme
of GˆS txu.

Proposition 3.3.7. Let G be an algebraic group over k and X an algebraic
variety over k. Then G acts freely on X if and only if Gx is trivial for all points
x P X.

Proof. See [6, III, Chapter 2, Corollary 2.3].

Free actions give rise to torsors in a natural way.

Theorem 3.3.8. Let G act freely on a S-scheme of finite type X such that the
second projection G ˆS X Ñ X is flat and of finite type. Then there exists a
non-empty G-invariant dense open subscheme U of X satisfying the following
properties:
1) There exists a quotient map π : U ÞÝÑ U{G in the category of schemes.
2) π is onto, open and U{G is of finite type over S.
3) π : U ÞÝÑ U{G is a flat G-torsor.
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Proof. See [7, V, Théorème 8.1].

Definition 3.3.9. Let G act on X. An open subscheme U which satisfies the
conclusion of the above theorem will be called a friendly open subscheme of X.

Definition 3.3.10. Let π : X Ñ Y be a G-torsor. For any field extension K{k
we define a map B : Y pKq Ñ H1pK,Gq as follows: for any y P Y pKq, the fiber
Xy is a torsor over SpecpKq, and we set Bpyq to be the isomorphism class of Xy

over SpecpKq.

Let us proceed by studying certain torsors that arise from group represen-
tations, which will be useful later.

Definition 3.3.11. We say that G acts generically freely on X if there exists
a non-empty G-stable open subscheme U of X on which G acts freely.

Proposition 3.3.12. Let G be an algebraic group over k acting linearly and
generically freely on an affine space ApV q, where V is a finite dimensional k-
vector space. Let U be a non-empty friendly open subscheme of ApV q on which
G acts freely. Then U{G is a classifying scheme of H1p´, Gq. In particular we
have edpGq ď dimpV q ´ dimpGq.

Proof. We have to show that, for any field extensionK{k, the map B : U{GpKq Ñ
H1pK,Gq is surjective. Let g P Z1pK,Gq, that is a Galois 1-cocycle. We
twist the action of GalpKs{Kq over V pKsq by setting γ ˚ v “ γ ¨ v ¨ gpvq´1 for
all γ P GalpKs{Kq and v P V pKsq. A quick check shows that this action is
GalpKs{Kq semilinear, that is γ ˚ pλvq “ γpλqpγ ˚ vq for all λ P Ks. By Galois
descent the invariant set V pKsqGalpK

s
{Kq,˚ is a K-linear subspace such that is

isomorphic to V pKsq when base-changed to Ks. It is then in particular Zariski
dense, so that it intersects the dense open subset U . Let v0 P UpKq be an
invariant point for the new action ˚. If π is the projection map U Ñ U{G, we
want to show that Bpπpv0qq “ g. First of all the fact that v0 is invariant implies
that v0 ¨ gpγq “ γ ¨ v0 for every γ P GalpKs{Kq. Then for every γ P GalpKs{Kq,
γ ¨πpv0q “ πpγ ¨v0q “ πpv0 ¨ gpγqq “ πpv0q, where the last equality holds since U
is a G-torsor. From this we have that πpv0q P U{GpKq. Recalling the explicit
description of the relation between torsors and cocycles, and using once again
that v0 ¨ gpγq “ γ ¨ v0 we see that in fact Bpπpv0qq “ g.

We remark here that any algebraic group has a generically free action over
some vector space. Indeed, G is isomorphic to a closed subgroup of some GLn,
and in suffices to take V “Mnpkq.

In particular we see that the essential dimension of an algebraic group is
finite.

3.4 Versal pairs

In this section we introduce the notion of versal pairs and show how it can be
used to compute the essential dimension of algebraic groups.
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Let k be a field and Uk be the category of all commutative k-algebras with
homomorphism of k-algebras as morphisms. Every functor F : Uk Ñ Sets de-
fines by restriction a functor Ck Ñ Sets. We shall relate the essential dimension
of this restriction with versal pairs.

Definition 3.4.1. Let F : Uk Ñ Sets be a functor and pa,Kq be a pair such
that K is an extension of k and a P F pKq. We say that the pair pa,Kq is a versal
pair if for every extension L{k and every element b P F pLq, there exist a local
k-subalgebra O of K and an element c P F pOq such that F pO Ñ Kqpcq “ a,
there is a morphism O Ñ L in Uk such that F pO Ñ Lqpcq “ b.

Definition 3.4.2. Let F : Uk Ñ Sets be a functor which has a versal pair. We
say that a versal pair pa,Kq is nice if for any k Ď L Ď K and a1 P F pLq such
that a “ a1K , the pair pa1, Lq is versal. We say that F is nice if it has a nice
versal pair.

Proposition 3.4.3. Let F : Uk Ñ Sets be a functor which has a versal pair.
Then the essential dimension of the restriction of F to Ck is at most the minimum
transcendence degree of the fields for which there is a versal pair. Moreover, if
F is nice, then edkpF q “ edkpaq, where pa,Kq is any nice versal pair.

Proof. Let L{k be any field extension, and let b P F pLq. Let pa,Kq be a versal
pair such that trdegpK : kq is minimal. Since pa,Kq is versal, then b comes
from an element of F pκpOqq, where κpOq is the residue field of some local k-
algebra O. Then edpbq ď trdegpκpOq : kq ď trdegpK : kq. This proves the first
assertion.

Let now pa,Kq be a nice versal pair. Take a subextension k Ď L Ď K with an
element a1 P F pLq such that a “ a1L and trdegpL : kq “ edpaq. By assumption,
pa1, Lq is versal, so by the preceding point edkpF q ď trdegpL : kq “ edpaq. On
the other hand, edpaq ď edkpF q by definition of essential dimension.

Definition 3.4.4. Let f : X Ñ Y be a G-torsor with Y irreducible. We say
that it is classifying for G if, for any field extension k1{k and for any torsor P 1

of G over k1{k, the set of points y P Y pk1q such that P 1 is isomorphic to the
fiber f´1pyq is dense in Y .

Remark 3.4.5. The proof of Proposition 3.3.12 actually tells us that we obtain
a classifying torsor. Furthermore one can always find a reduced classifying torsor
for G. Indeed, take X Ñ Y a classifying torsor for G and let ϕ : Yred Ñ Y
be the canonical reduced scheme associated to Y . Then pulling back the torsor
X Ñ Y along ϕ gives a torsor which is isomorphic to Xred Ñ Yred and which is
also classifying.

Definition 3.4.6. Let G be an algebraic group over k, K a field extension of
k and P Ñ SpecpKq a G-torsor. We say that P is k-generic if
1) there exists an integral scheme Y with function field kpY q – K and a G-
torsor f : X Ñ Y whose generic fiber f´1pηq Ñ SpecpKq is isomorphic to
P Ñ SpecpKq.
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2) For every extension k1{k with k1 infinite, for every non-empty open set U of
Y and for every G-torsor P 1 ÞÝÑ Specpk1q, there exists a k1-rational point x P U
such that f´1pxq – P 1.

Generic torsors are by definition generic fibers of classifying torsors.

Proposition 3.4.7. Let P Ñ SpecpkpY qq be a generic torsor. Then pP, kpY q
is a versal pair for the functor of G-torsors.

Proof. Take T Ñ SpecpLq any torsor defined over L{k. Since X Ñ Y is a
classifying torsor, there exists a L-rational point y : SpecpLq Ñ Y such that
T Ñ SpecpLq is the pullback along y. Take OY,y the local ring at the point y and
let φ : SpecpOY,yq Ñ Y be the canonical morphism. Consider P 1 Ñ SpecpOY,yq
the torsor obtained by pulling back X Ñ Y along φ. The local ring OY,y
in naturally a sub k-algebra of kpY q, so P Ñ SpecpkpY qq is a pullback of
P 1 Ñ SpecpOY,yq. Moreover, the morphism y : SpecpLq Ñ Y factorizes through
Specpkpyqq; if we denote by P 2 Ñ SpecpkpY qq the torsor obtained by pulling
back P 1 Ñ SpecpOY,yq along the morphism Specpkpyqq Ñ SpecpOY,yq, it is clear
that T Ñ SpecpLq comes from P 2 Ñ Specpkpyqq. This shows the thesis.

Definition 3.4.8. Let f : X Ñ Y and f 1 : X 1 Ñ Y 1 be two G-torsors. We say
that f 1 is a compression of f if there is a diagram

X
g

99K X 1

Óf Óf 1

X 1
h

99K Y 1

where g is a G-equivariant rational dominant morphism and h is a rational
morphism.

Remark 3.4.9. Take as above a compression of f : X Ñ Y and let U Ď Y the
open subscheme on which h is defined. Taking the pullback of X 1 Ñ Y 1 along
h, one obtains a G-torsor f2 : P Ñ U which fits into a diagram

X 99K P Ñ X 1

Óf Óf2 Óf 1

Y 99K U Ñ Y 1

and f2 is a compression too. So we can basically reduce a compression to a
pullback.

Lemma 3.4.10. Let g : X 99K X 1 be a rational dominant G-equivariant mor-
phism between generically free schemes. Then exists X0 and X 10 friendly open
subschemes of X and X 1 such that g induces a compression of torsors

X0
g

99K X 10
Ó Ó

X0{G
h

99K X 10{G
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Proof. Take U some friendly open subscheme of X. Since g is dominant, we can
find an open subscheme U 1 of X 1, which lies in the image of g. Intersecting U 1

with some friendly open set of X 1 gives a friendly open set X 10 in the image of
U . Then X0 “ g´1pX 10q is the desired open set.

Proposition 3.4.11. Let f : X Ñ Y be a G-torsor with Y integral. Let
T Ñ SpecpkpY qq be its generic fiber; then its essential dimension is equal to the
smallest dimension of the base scheme of a compression of f .

Proof. Let f and T be as above. Let f 1 : X 1 Ñ Y 1 be a compression of f
and T 1 Ñ SpecpkpY 1qq its generic fiber. By Remark 3.4.9 one can suppose
that the compression is a pullback. But then it is clear that T 1 maps to T
under H1pkpY 1q, Gq ÞÝÑ H1pkpY q, Gq, so that the essential dimension of T Ñ
SpecpkpY qq is at most the dimension of the scheme Y 1.

Conversely suppose there is a subextension k Ď K 1 Ď K “ kpY q to-
gether with a torsor T 1 over K 1 such that T 1 maps to T under H1pK 1, Gq Ñ
H1pkpY q, Gq; we have to find a G-torsor f 1 : X 1 Ñ Y 1 such that T 1 is iso-
morphic to its generic fiber and a compression from f to f 1. We can suppose
everything to be affine, since the problem is local. So let us write Y “ SpecpAq,
X “ SpecpBq, T “ SpecpP q, T 1 “ SpecpP 1q and let krGs denote the algebra of
G. We have to find a subring A1 of K 1 whose field of fractions is K 1, a G-torsor
B1{A1 such that P 1 – B1ˆA1K

1 and a rational compression from B1{A1 to B{A.
Since K is of finite type over k, we can write it as K “ kpα1, ..., αnq; since

P is of finite type over K we write it P “ Krβ1, ..., βms. In the same way we
write K 1 “ kpα11, ..., α

1
sq and P 1 “ K 1rβ11, ..., β

1
ts.

Since both P 1ˆK1 P
1 and P 1ˆk krGs are finitely generated algebras over K 1

one can find a polynomial f in the α1i such that B1 ˆA1 B
1 – B1 ˆk krGs where

A1 “ krα1sf and B1 “ A1rβ1s. It is clear that P 1 – B1 ˆA1 K
1, so we have to

find a rational morphism from B1{A1 to B{A. The image of A1 under the map
A1 Ď K 1 Ď K lies in a subring of the form krαsg for some polynomial g in the
α1i. Now A “ krαsh for some h and we have a natural map A1 Ñ Ag. In the
same way one finds a rational map B1 Ñ Bp compatible with the previous one.
Then the thesis follows.

Lemma 3.4.12. Let f 1 : X 1 Ñ Y 1 be a compression of a classifying torsor
f : X Ñ Y . Then f 1 is also classifying.

Proof. Let

X
g

99K X 1

Óf Óf 1

X 1
h

99K Y 1

be such a compression. Let k1{k be a field extension with k1 infinite and let
P 1 P H1pk1, Gq. Since f is classifying one can find a k1 rational point y P Y pk1q
which lies in U , the open set on which h is defined, such that f´1pyq – P 1.
Then the fiber of f 1 at hpyq clearly gives a torsor isomorphic to P 1.
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Corollary 3.4.13. Let T Ñ SpecpKq be a generic G-torsor, K 1 Ď K and
T 1 Ñ SpecpK 1q such that T 1K “ T . Then T 1 is also a generic torsor.

Proof. Take a classifying G-torsor X Ñ Y which is a model for T . Then, by the
proof of Lemma 3.4.10, defining T over a smaller field means compressing the
torsor X Ñ Y . Since the compression of a classifying torsor is again classifying
it follows that T comes from a generic torsor.

The following Corollary is very important for some computations of essential
dimension.

Corollary 3.4.14. The functor of G-torsors is nice. Furthermore, if T P

H1pK,Gq is a generic torsor, then the essential dimension of G is equal to
the essential dimension of T .

Using compressions we are able to describe the behavior of essential dimen-
sion with respect to closed subgroups.

Theorem 3.4.15. Let G be an algebraic group and H a closed algebraic sub-
group of G. Then

edpHq ` dimpHq ď edpGq ` dimpGq

In particular, if G is finite, we have edpHq ď edpGq.

Proof. Let ApV q be an affine space on which G acts generically freely. Take U
open in ApV q such that U{G and U{H both exist and are torsors. Now take a
G-compression

U
g

99K X
Ó Ó

U{G
h

99K Y

such that dimpY q “ edpGq. Since the stabilizer in H of a point is a subgroup
of Gx, it follows that H acts generically freely on U and on X too. Now g
is also H-equivariant and by Lemma 3.4.10 g gives rise to an H-compression
U Ñ U{H. It follows that

edpHq ď dimpXq ´ dimpHq

“ dimpY q ` dimpGq ´ dimpHq

“ edpGq ` dimpGq ´ dimpHq

We conclude this section with an example. Consider the algebraic group
PGLn over Specpkq. There is a natural representation of PGLnpkq on the
k-vector space Mnpkq ˆMnpkq given by conjugation, that is

gpm1,m2q “ pgm1g
´1, gm2g

´1q
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This gives a generically free representation of PGLn. Then we obtain a torsor,
whose generic fiber given a versal pair for PGLn. More precisely we have a
commutative diagram

P ÝÝÝÝÑ Specpkrxij , yijsq
§

§

đ

§

§

đ

Specpkpxij , yijq
PGLnpkq ÝÝÝÝÑ Specpkrxij , yijsq

PGLnpkq

where 1 ď i, j ď n and P is the generic torsor.
From the description of the relation between PGLn torsors and Azumaya al-

gebras, we see that from P one obtains a central simple algebraMnpkpxij , yijqq
PGLnpkq,

which is called also universal algebra and denoted by UDpnq. Then Corollary
3.4.14 tells us that edkpPGLnq “ edkpUDpnqq.



Chapter 4

Computations

In this chapter we will use the general theory developed so far to give estimates
of the essential dimension of PGLn.

Upper bounds in the case of algebraically closed fields were first given in
[16] by Lorenz and Reichstein, and then in the general case in [17] by Lorenz,
Reichstein, Rowen and Saltman. We will also present estimates for the essential
p-dimension, following [22], which were sharpened by A. Ruozzi in [32].

Lower bounds are more difficult to produce. The first lower bounds are due
to Reichstein and Youssin in [27]. These were sharpened in the work of A.
Merkurjev in [20], which we will follow.

4.1 Upper bounds

Here we give upper bounds of the essential of PGLn for n odd using central
simple algebras. Almost all the discussion in taken from [17].

4.1.1 Essential dimension of crossed products

In this subsection we will denote by G a finite group and H a subgroup of G.
Let us briefly recall the main definitions. We will assume that the characteristic
of the base field is coprime with the order of G.

Definition 4.1.1. A G-module is a left module over the ring ZrGs. A G-lattice
is a G-module that is free of finite rank over Z. A G-lattice M is called a
permutation lattice if M has a Z-basis that is permuted by G, and permutation
projective if M is a direct summand of some permutation G-lattice.

A G-module M is called faithful if the only element of G acting trivially is
the identity. The G{H augmentation ideal ωpG{Hq is defined as the kernel of
the natural augmentation map ZrG{Hs “ ZrGs bZrHs Z Ñ Z. Thus there is a
short exact sequence of G-lattices

0 Ñ ωpG{Hq Ñ ZrG{Hs Ñ ZÑ 0

41
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Lemma 4.1.2. Let dGpωpG{Hqq denote the minimum number of generators of
ωpG{Hq as a ZrGs- module. For any r ě dGpωpG{Hqq take an exact sequence

0 ÑM Ñ ZrGsr f
Ñ ωpG{Hq Ñ 0

where f maps the standard basis of ZrGsr to a set of r generators. Then M is
a faithful G-lattice if and only if r ě 2 or H ‰ t1u.

Proof. It is enough to show that MbZQ is G-faithful, thus we may work over the
algebra QrGs, which is semi-simple due to Maschke’s theorem. Since fbid splits,
we have a QrGs- isomorphism pωpG{Hq bZ Qq ‘ pM bZ Qq – QrGsr. Similarly,
the canonical exact sequence ZrGsωH Ñ ZrGs Ñ ZrG{Hs gives pωpG{Hq bZ
Qq ‘Q‘QωH – QrGs. Therefore, M bZ Q – QrGsr´1 ‘Q‘QrGsωH.

If r ě 2 then QrGsr´1 is G-faithful, and if H ‰ t1u then ωH bZ Q is H-
faithful and so QrGsωH – pωHbZQq ÒGH is G-faithful. In either case, MbZQ is
faithful, as desired. On the other hand, r “ 1 and H “ t1u leads to MbZQ – Q
which is not faithful.

We shall call a central simple algebra A{F an pE,G{Hq-crossed product if
A has a maximal subfield L whose Galois closure E over F has the property
that GalpE{F q “ G and GalpE{Lq “ H. We will say that A is a G{H-crossed
product if it is an pE,G{Hq crossed product for some faithful G-field E.

Since the degree of a G{H crossed product is equal to rG : Hs, we see that
isomorphism classes of pE,G{Hq crossed products are in bijective correspon-
dence with the relative Brauer group BpL{F q, which is in turn identified with
the kernel of the restriction homomorphism H2pG,E˚q Ñ H2pH,E˚q.

A G-module M is called H1-trivial if H1pH,Mq “ 0 for every H ď G.
Equivalently, M is H1 trivial if ExtGpP,Mq “ 0 for all permutation projective
G-lattices P .

Lemma 4.1.3. Given an exact sequence 0 Ñ M Ñ P Ñ ωpG{Hq Ñ 0 of
G-lattices, with P permutation, let N be an H1-trivial G-module. Denote the
kernel of the restriction homomorphism H2pG,Nq Ñ H2pH,Nq by KpG{H,Nq.
Then there is a natural isomorphism φN : HomGpM,Nq{ImpHomGpP,Nqq Ñ
KpG{H,Nq.

Here the word ’natural’ means that for every homomorphism N Ñ N 1 of
H1-trivial G-modules, the following diagram commutes

HomGpM,Nq{ImpHomGpP,Nqq
φN1

ÝÝÝÝÑ KpG{H,N 1q
İ

§

§

İ

§

§

HomGpM,Nq{ImpHomGpP,Nqq
φN

ÝÝÝÝÑ KpG{H,Nq

Proof. See [30, Theorem 1.4].
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In subsequent applications we will always take N “ E˚, where E is a faithful
G-field. Note that E˚ is H1-trivial by Hilbert’s Theorem 90. In the identifi-
cation of KpG{H,E˚q with pE,G{Hq crossed products, we shall denote the
pE,G{Hq crossed product associated to a G-homomorphism f : M Ñ E˚ by
Algpfq.

Definition 4.1.4. Let A{F and B{K be central simple algebras. We call B{K
a rational specialization of A{F if there exists a field F 1 containing both F and
K such that F 1{K is rational and B bK F 1 – A bF F

1. This is equivalent to
requiring that degA “ degB and A embeds in some Bpt1, ..., tnq, where t1, ..., tn
are independent variables over F .

If S is a set of central simple algebras, we say that an algebra A in S
has the rational specialization property in S if every element of S is a rational
specialization of A.

We need one more technical lemma.

Lemma 4.1.5. Let A{F and B{K be central simple algebras. If A1 – AbF F
1

for some rational field extension F 1{F then edpAq “ edpA1q. In particular, if A
is a rational specialization of B, then edpAq ď edpBq.

Proof. See [17, Lemma 2.7].

Consider now an exact sequence of G-modules

0 ÑM Ñ P Ñ ωpG{Hq Ñ 0

with P permutation and M faithful.

Lemma 4.1.6. Let E be a G-field and f : M Ñ E˚ be a homomorphism of
G-modules. If kpfpMqq is contained in a faithful G-subfield E0 of E then Algpfq
is defined over EG0 .

Proof. Since f is the composition of f0 : M Ñ E˚0 with the inclusion E˚0 ãÑ E˚,
Lemma 4.1.3 tells us that A “ Algpf0q bEG0

EG.

Theorem 4.1.7. Let µ : M ãÑ kpMq˚ be the natural inclusion. Then D “

Algpµq has the rational specialization property in the class of G{H crossed
products containing a copy of k in their center. In particular, edpAq ď rankpMq
for any G{H crossed product A{F with k Ď F .

Proof. Write A “ Algpfq for some G-homomorphism f : M Ñ E˚, where E
is a faithful G-field with EG “ F . Let EpP q denote the fraction field of the
group algebra ErP s,with the G-action induced from the G-action on E and
P . By [17, Proposition 2.4], there exists an E-isomorphism j : EpP q – Eptq
of G-fields, where t “ pt1, ..., trq are indeterminates on which G acts trivially
and r “ rankpP q. Therefore, EpP qG – EGptq “ F ptq is a rational extension
of F . Let ft : M Ñ Eptq˚ denote the composition of f with the natural
inclusion E˚ ãÑ Eptq˚. Then Algpftq “ Algpfq bF F ptq “ A bF F ptq. By
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the Lemma 4.1.3, Algpftq – Algpft ` g|M q for any g P HomGpP,Eptq
˚q. Let

g be the composite g : P ãÑ EpP q˚ Ñ Eptq˚ and let ϕ be the G-module map
ϕ : M Ñ Eptq˚ defined by ϕpmq “ ftpmqgpmq. Now we will show that ϕ
lifts to an embedding of G-fields kpMq ãÑ Eptq. Indeed, modulo E˚, ϕpmq ”
gpmq P P Ď Eptq˚. Hence, tϕpmqumPM is an E-linearly independent subset
of Eptq, and so the map krϕs : krM s Ñ Eptq, is a G-equivariant embedding
of the group ring krM s into Eptq. This embedding lifts to an embedding of
G-fields φ : kpMq “ QpkrM sq ãÑ Eptq, as claimed. So φ ˝ µ “ ϕ, and hence
DbkpMqG F ptq “ Algpφ ˝ µ “ Algpϕq – Algpftq “ AbF F ptq. This proves that
A is a rational specialization of D.

The previous lemmas imply that edpAq ď edpDq ď trdegkkpMq
G “ rankpMq.

Corollary 4.1.8. Let A be a G{H crossed product. Then

edpAq ď r|G| ´ rG : Hs ` 1

where r “ dGpωpG{Hqq if H ‰ t1u and r “ maxt2, dGpωpG{Hqqu if H “ t1u.

Proof. Applying Theorem 4.1.7 to an exact sequence

0 ÑM Ñ ZrGsr f
Ñ ωpG{Hq Ñ 0

we obtain

edpAq ď rankpMq “ rankpZrGsrq ´ rankpωpG{Hqq “ r|G| ´ rG : Hs ` 1

4.1.2 Brauer factor sets

Here we briefly review some results of the theory of Brauer factor sets, following
[29]. Let A be a central simple algebra over k of degree n. Suppose K is a
maximal separable subfield of A over k and E is the normal closure of K, with
G “ GalpE{kq. Then K “ kpuq for some u in K, implying that the minimal
polynomial of u has degree n, and E is its splitting field over K. Let ri be its
roots in E, for 1 ď i ď n. The group G permutes the ri and thus can be viewed
as a subgroup of the permutation group on n elements.

There exists an element v in A such that A “ KvK, and one can view
naturally A Ď A bk K – MnpKq Ď MnpEq. Write v “ pvijq P MnpEq, where
each vij is non-zero due to A “ KvK. Let cijk “ vijvjkv

´1
ik . Then the set of

the cijk satisfies the following conditions:
1) σcijk “ cσi,σj,σk for all σ in G
2) cijkcikm “ cijmcjkm.

A set of n3 elements in E that satisfies these conditions is called Brauer
factor set. We show now that conversely, a Brauer factor set gives rise to a
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central simple algebra. Let pcijkq be a Brauer factor set and consider the k-
vector subspace A “ tpaijq P MnpEq|σaij “ aσi,σj for all σ in Gu. On A we
define an associative multiplication by the rule

paijqpbijq “
n

ÿ

j“1

paijcijkbjkqeik

Then A is a simple k-algebra which can be injected into MnpEq via the map
paijq Ñ

ř

jpcij1aijqeij . If we take the trivial Brauer set that is identically 1,
then we obtain the matrix algebra.

Suppose that pcijkq and pc1ijkq are Brauer factor sets with respect to the same
field K{k. The ensuing simple algebras are isomorphic if and only if there are
some elements wij in E such that:
1) σwij “ wσi,σj
2) c1ijk “ wijwjkw

´1
ik cijk.

In these case the two sets are called equivalent. A Brauer set pcijkq is called
normalized if ciij “ ciji “ cjii “ 1 and ckji “ c´1

ijk for all i, j, k.
Let us state now the results that we will need.

Theorem 4.1.9. For any Brauer factor set pcijkq there is a normalized Brauer
factor set equivalent to pcijkq

2. In particular, if n is odd then every Brauer
factor set has an equivalent normalized Brauer factor set.

Proof. Let c1ijk “ cijkc
´1
kji. Then pc1ijkq is a normalized Brauer set equivalent

to pcijkq. In n is odd, consider c2ijk “ pc1ijkq
pn`1q{2. This is normalized and

equivalent to pcijkq. See [29, Theorem 4] for more detail.

We will need the following version of Lemma 4.1.6.

Proposition 4.1.10. Let A be an pE,G{Hq crossed product defined by a re-
duced Brauer factor set pcijhq. Suppose that pcijhq is contained in a faithful
G-subfield E0 of E. Then A is defined over EG0 .

Proof. There is an exact sequence

0 Ñ ωpG{Hqb
2
Z Ñ P 1 Ñ ωpG{Hq Ñ 0

where P is the permutation sublattice P “
À

ḡ1‰ḡ2PG{H
Zpḡ1 bZ ḡ2q of

ZrG{Hsb2
Z .

In fact, tensoring the exact sequence 0 Ñ ωpG{Hq Ñ ZrG{Hs Ñ Z Ñ 0
with ωpG{Hq on Z we obtain the previous one via the identification ωpG{HqbZ
ZrG{Hs – P given by sending the elements pḡ1 ´ ḡ2q bZ ḡ2 to ḡ1 bZ ḡ2.

The G-module ωpG{Hqb
2
Z has the convenient set of generators yijh “ pḡi ´

ḡjq bZ pḡj ´ ḡhq, where i, j, h range from 1 to rG : Hs. If f : ωpG{Hqb
2
Z Ñ E˚

is a G-module homomorphism then the elements cijh “ fpyijhq form a reduced
Brauer factor set for Algpfq. Conversely, for any reduced Brauer factor set

pcijhq in E˚, there exists a homomorphism f : ωpG{Hqb
2
Z Ñ E˚ such that

fpyijhq “ cijh : see [30, Corollary 1.3].
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4.1.3 Universal algebras

In this subsection we shall assume that G “ Sn and H “ Sn´1. We will use the
notations ZrSn{Sn´1s “ Un and ωpSn{Sn´1q “ An´1. The natural generators
of Un will be denoted by u1, ..., un and the symmetric group Sn permutes them
via σpuiq “ uσpiq. Notice that An´1 is the sublattice of Un generated by ui´u1

as i ranges from 2 to n.
Recall that the universal division algebra UDpnq is the localisation over the

non-central elements of the algebra generated by two generic matrices X and
Y . It is a division algebra of degree n by [28, Theorem 3.2.6]. We may assume
without loss of generality that X is diagonal and we denote the diagonal entries
of X by ζ 1ii and the entries of Y by ζij , where ζ 1ii and ζij are algebraically
independent variables over k. The group Sn permutes these variables as follows
: σpζ 1iiq “ ζσpiqσpiq1 and σpζijq “ ζσpiqσpjq.

We identify the multiplicative group generated by ζ 1ii with the Sn lattice Un
via ζ 1ii Ø ui, and the multiplicative group generated by ζij with Un bZ Un via
ζij Ø ui bZ uj . Consider the exact sequence

0 Ñ Kerpfq Ñ Un ‘ U
bZ2
n

f
Ñ An´1 Ñ 0

of Sn-lattices, where fpui, ujbuhq “ uj´uh. This sequence is the sequence
of Proposition 4.1.10 for G “ Sn and H “ Sn´1, with two extra copies of
Un added: the second copy of Un is the sublattice of UbZ2

n that is spanned
by all elements ui b ui. Both copies of Un belong to Kerpfq, and in fact
Kerpfq “ Un‘Un‘A

bZ2
n´1, where AbZ2

n´1 is identified with the sublattice of UbZ2
n

that is spanned by all elements pui ´ ujq b pul ´ umq.
Let E “ kpKerpfqq and F “ ESn . By [8, Theorem 3] Theorem 3, F is

naturally isomorphic to the center Zpnq of UDpnq. Note that E “ F pζ 111, ..., ζ
1
nnq

is generated over F by the eigenvalues of the generic matrix X. Consequently,
UDpnq is an pE,Sn{Sn´1q product and ESn´1 is isomorphic to the maximal
subfield ZpnqpXq of UDpnq; see [24] Section II.1.

Theorem 4.1.11. Let n ě 5 be an odd integer. Then UDpnq is defined over

F0 “ kp
Ź2

An´1q
Sn .

Proof. We need to construct a reduced Brauer factor set contained in E0 “

kp
Ź2

An´1q. Note that the Sn action on E0 is faithful.
The computation in [29] Section 2 shows that the elements cijh “ ζijζjhζ

´1
ih P

E˚ form a Brauer factor set of UDpnq. If n is odd, UDpnq has a normalized
Brauer factor set pc1ijhq given by

c1ijh “ pcijh{chjiq
n`1
2 “ pζijζ

´1
ji ζjhζ

´1
hj ζhiζ

´1
ih q

n`1
2

Now observe that ζijζ
´1
ji ζjhζ

´1
hj ζhiζ

´1
ih is precisely the element of UbZ2

n we iden-
tified with pui ´ ujq ^ puj ´ uhq.

We have seen in the previous chapter that the universal division algebra
gives a versal pair for the algebraic group PGLn, so we have obtained an upper
bound for the essential dimension of PGLn for n odd.
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Theorem 4.1.12. The essential dimension of PGLn,k is at most pn´1qpn´2q{2
if n ě 5 is odd.

4.1.4 Essential p-dimension

In this subsection we prove an upper bound for the essential p-dimension of
PGLn. This will be a consequence of an upper bound of the essential dimension
of crossed products with certain properties. Here we follow the work of Meyer
and Reichstein, [22]

In the sequel we will use once more the notation introduced at the beginning
of the chapter.

Lemma 4.1.13. Let G ‰ t1u be a finite group, H be a subgroup of G and
H1, ...,Hr be subgroups of H. Let

0 ÑM Ñ

r
à

i“1

ZrG{His Ñ ωpG{Hq Ñ 0

be an exact sequence of G-lattices. Assume that H does not contain any
nontrivial normal subgroup of G. Then the G-action on M is not faithful if and
only if s “ 1 and H1 “ H.

Proof. To determine whether or not the G-action on M is faithful, we may
replace M by MQ “M bZ Q. After tensoring with Q, the sequence splits, and
we have an isomorphism ωpG{HqQ ‘MQ – ‘

r
i“1QrG{His.

Assume that r ě 2. Then Hr is a subgroup of H, we have a natural surjective
map QrG{Hrs Ñ QrG{Hs. Using complete irreducibility over Q once again,
we see that QrG{Hs is a subrepresentation of QrG{Hrs. Thus the previous
isomorphism tells us that QrG{Hr´1s is a subrepresentation of MQ. The kernel
of the G-representation on QrG{Hr´1s is a normal subgroup of G contained in
Hr´1; by our assumption on H, any such subgroup is trivial. This shows that
H acts faithfully on QrG{Hr´1s and hence on M .

Assume now that r “ 1. Our exact sequence assumes the form

0 ÑMQ Ñ QrG{H1s Ñ ωpG{HqQ Ñ 0

If H “ H1 then M – Z, with trivial G-action.
We want to show that if H1 Ă H then the G-action on MQ is faithful. Denote

by Qr1s the trivial representation of some group. Observe that

QrG{H1s – IndGH1
Qr1s – IndGHInd

H
H1

Qr1s – IndGHQrH{H1s

– IndGHpωpH{H1qQ ‘Qr1s
– IndGHωpH{H1qQ ‘QrG{Hs
– IndGHωpH{H1qQ ‘ ωpG{HqQ ‘Qr1s

and we obtain MQ – IndGHωpH{H1qQ‘Qr1s. If H1 Ă H, then the kernel of the
G-representation IndGHωpH{H1qQ is a normal subgroup of G contained in H1.
By our assumption on H, this kernel is trivial.
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Lemma 4.1.14. Let V be a ZrGs-submodule of ωpG{Hq. Then the set GV “
tg P G|ḡ ´ 1̄ P V u is a subgroup of G containing H.

Proof. The inclusion H Ď GV follows directly from the definition.

To see that GV is closed under multiplication, suppose g, g1 P GV , so that
ḡ ´ 1̄ and ḡ1 ´ 1̄ lie in V . Then

gg1 ´ 1̄ “ g ¨ pḡ1 ´ 1̄q ` pḡ ´ 1̄q

also lies in V .

Definition 4.1.15. We say that g1, ..., gs P G generate G over H if the subgroup
generated by g1, ..., gs and H is the entire G.

Theorem 4.1.16. Let A be a G{H crossed product. Suppose that
1) g1, ..., gs P G generate G over H
2) if G is cyclic then H ‰ t1u.
Then edpAq ď

řs
i“1rG : pH XHgiqs ´ rG : Hs ` 1.

Proof. We claim that the elements ḡ1´ 1̄, ..., ḡs´ 1̄ generate ωpG{Hq as a ZrGs-
module.

Indeed, let V be the ZrGs-submodule of ωpG{Hq generated by these ele-
ments. Lemma 4.1.14 and condition (1) tell us that V contains ḡ ´ 1̄ for every
g P G. Translating these elements by G, we see that V contains ā´ b̄ for every
a, b P G. Hence, V “ ωpG{Hq, as claimed.

For i “ 1, ..., s, let Si “ tg P G|g ¨ pḡi´ 1̄q “ ḡi´ 1̄u be the stabilizer of ḡi´ 1̄
in G. We may assume here that gi is not in H, otherwise it could be removed
since it is not needed to generate G over H. Then clearly g P Si if and only if
ggi “ ḡi and ḡ “ 1̄. From this it is easily seen that Si “ H X Hgi . Thus we
have an exact sequence

0 ÑM Ñ ‘si“1ZrG{Sis
φ
Ñ ωpG{Hq Ñ 0

where φ sends a generator of ZrG{Sis to ḡi ´ 1̄ P ωpG{Hq. By Theorem 4.1.7 it
remains to show that G acts faithfully on M .

By Lemma 4.1.13 G fails to act faithfully on M if and only if r “ 1 and
S1 “ H “ Hg1 . But this possibility is ruled out by (2). Indeed, assume that
s “ 1 and S1 “ H “ Hg1 . Then G “ xg1, Hy and H “ Hg1 . Hence, H
is normal in G. Condition (2) tells us that H “ t1u. Moreover, in this case
G “ xg1, Hy “ xg1y is cyclic, contradicting (2).

Theorem 4.1.17. Let A be a G{H-crossed product. Suppose that H is con-
tained in a normal subgroup N of G and G{H is generated by r elements.
Furthermore, assume that either H ‰ t1u or r ě 2. Then

edpAq ď rrG : Hs ¨ rN : Hs ´ rG : Hs ` 1



4.1. UPPER BOUNDS 49

Proof. Let t1, ..., tr P G{N be a set of generators for G{N . Choose g1, ..., gr P G
representing t1, ..., tr and let H 1 “ xH,Hg1 , ...,Hgry. Since H ď N and N is
normal in G, H 1 is a subgroup of N . The group H 1 depends on the choice
of g1, ..., gr P G such that giN “ ti. Fix t1, ..., tr and choose g1, ..., gr P G
representing them, so that H 1 has the largest possible order; this is equivalent
to requiring that it has the smallest possible index in N , which we denote by
m. In particular m “ rN : H 1s ď rN : pHgig ¨Hqs for any i “ 1, ..., r and any
g P N .

Choose a set of representatives n1 “ 1, n2, ..., nm P N for the distinct left
cosets of H 1 in N . We will show that the elements tginj |i “ 1, ..., r; j “ 1, ...,mu
generate G over H. Indeed, let G0 be the subgroup of G generated by these
elements and H. Since n1 “ 1, G0 contains g1, ..., gr, hence G0 contains H 1.
Moreover, G0 contains nj “ g´1

1 pg1njq for every j, hence G0 contains all of
N . Finally, since t1 “ g1N, ...., tr “ grN generate G{N , we conclude that G0

contains all of G.
We now apply Theorem 4.1.16 to the elements tginju. Substituting

rG : Hs ¨ rH : pH ¨Hginj qs

for rG : pH XHginj qs, we calculate

edpaq ď
r

ÿ

i“1

m
ÿ

j“1

rG : pH XHginj qs ´ rG : Hs ` 1

“ rG : Hs ¨
r

ÿ

i“1

m
ÿ

j“1

rH : pH ¨Hginj q ´ rG : Hs ` 1

“ rG : Hs ¨
r

ÿ

i“1

m
ÿ

j“1

rN : Hs

rN : pH ¨Hginj qs
´ rG : Hs ` 1

ď rG : Hs ¨
r

ÿ

i“1

m
ÿ

j“1

rN : Hs

m
´ rG : Hs ` 1

“ rrG : Hs ¨ rN : Hs ´ rG : Hs ` 1

Corollary 4.1.18. Let A{K be a central simple algebra of degree n. Suppose
that A contains a field F , Galois over K and GalpF {Kq can be generated by
r ě 1 elements. If rF : Ks “ n then we further assume that r ě 2. Then

edpAq ď r
n2

rF : Ks
´ n` 1

Proof. By [22, Lemma 2.1] we may assume that F is contained is a subfield L of
A such that L{K is a separable extension of degree n “ degpAq. Denote by E
the Galois closure of L over K and by G the associated Galois group. Consider
also H “ GalpE{Lq and N “ GalpE{F q. Then A{K is a G{H-crossed product,
and it suffices to apply the previous theorem.
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Corollary 4.1.19. Let n “ ps for some natural number s ě 2. Then

edpPGLn; pq ď 2
n2

p2
´ n` 1

Proof. Call A “ UDpnq the universal algebra. In [31] Rowen and Saltman
showed that A1 “ AbKK

1 contains a field F , Galois over K 1 with GalpF {Kq –
Z{pˆ Z{p. Thus Corollary 4.1.18 tells us that

edpPGLn; pq “ edpA; pq ď edpA1q ď 2
n2

p2
´ n` 1

This is the thesis.

4.2 Lower bounds

As previously mentioned, here we follow the work of Merkurjev in [20]. We refer
to the book of J.P. Serre [33] for Galois cohomology and profinite groups.

4.2.1 Preliminaries

Let k be a base field, ks a separable closure and Γ “ Galpks{kq. The character
group Chpkq of k is defined as

HomcontpΓ,Q{Zq “ H1pk,Q{Zq – H2pk,Zq

where HomcontpΓ,Q{Zq are the continuous homomorphism from the profinite
group Γ to the discrete group Q{Z. For a character χ P Chpkq, set kpχq “
pksqKerpχq. If φ Ď Chpkq is a finite subgroup, set kpφq “ pksqXKerpχq, where the
intersection is taken over all χ P φ. The Galois group G “ Galpkpφq{kq is abelian
and φ is canonically isomorphic to the character group ChpGq “ HompG,Q{Zq
of G.

If k1 Ď k is a subfield and χ P Chpk1q, we write χk for the image of χ under
the natural map Chpk1q Ñ Chpkq and kpχq for kpχkq.

Remark 4.2.1. If φ Ď Chpkq is a finite subgroup, then the character χkpφq is
trivial if and only if χ P φ.

Lemma 4.2.2. Let φ, φ1 Ď Chpkq be two finite subgroups. Suppose that for
a field extension K{k, we have φK “ φ1K in ChpKq. Then there is a finite
subextension K 1{k in K{k such that φK1 “ φ1K1 in ChpK 1q.

Proof. Choose a set of characters tχ1, ..., χmu generating φ and a set of charac-
ters tχ11, ..., χ

1
mu generating φ1 such that pχiqK “ pχ

1
iqK for all i. Let ηi “ χi´χ

1
i.

As all ηi vanish over K, the finite field extension K 1 “ kpη1, ..., ηmq of k can be
viewed as a subextension in K{k. As pχiqK1 “ pχ

1
iqK1 , we have φK1 “ φ1K1 .
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Consider now the cup-product

Chpkq bZ k
˚ “ H2pk,Zq bZ H

0pk, pksq˚q Ñ Brpkq

that takes χb a to the class χY paq in Brpkq that is split by kpχq.
For a finite subgroup φ Ď Chpkq write Brdecpkpφq{kq for the subgroup of

decomposable elements in Brpkpφq{kq generated by the elements χY paq for all
χ P φ and a P k˚. The indecomposable relative Brauer group Brindpkpφq{kq is
the factor group Brpkpφq{kq{Brdecpkpφq{kq.

Let now E be a complete field with respect to a discrete valuation v and
K its residue field. Let p be a prime integer different from charpKq. There
is a natural injective homomorphism ChpKqtpu Ñ ChpEqtpu of the p-primary
components of the character groups that identifies ChpKqtpu with the character
group of an unramified field extension of E. For a character χ P ChpKqtpu, we
write χ̂ for the corresponding character in ChpEqtpu. By [9] Chapter 7.9. there
is an exact sequence

0 Ñ BrpKqtpu
i
Ñ BrpEqtpu

Bv
Ñ ChpKqtpu Ñ 0

If a P BrpKqtpu, then we write â for the element ipaq in BrpEqtpu. It holds,
for example, that if a “ χY pūq for some χ P ChpKqtpu and a unit u P E, then
â “ χ̂Y puq.

Proposition 4.2.3. Let E be a complete field with respect to a discrete valu-
ation v and K its residue field of characteristic different from p. Then
1) indpâq “ indpaq for any a P BrpKqtpu
2) Let b “ â`pχYpxqq for an element a P BrpKqtpu, χ P ChpKqtpu and x P E˚

such that vpxq is not divisible by p. Then indpbq “ indpaKpχqq ¨ ordpχq
3) Let E1{E be a finite field extension and v1 the discrete valuation on E1 ex-
tending v with residue field K 1. Then for any b P BrpEqtpu, one has Bv1pbE1q “
e ¨ BvpbqK1 , where e is the ramification index of E1{E.

Proof. See [9, Proposition 8.2].

The choice of a prime element π in E provides with a splitting of the sequence
(1) by sending a character χ to the class χ̂ Y pπq in BrpEqtpu. Thus, any
b P BrpEqtpu can be written in the form b “ â` pχ̂Y pπqq for χ “ Bvpbq and a
unique a P BrpKqtpu.

The homomorphism

sπ : BrpEqtpu Ñ BrpKqtpu

defined by sπpbq “ a, where a is given by the above relation, is called a special-
ization map. We have sπpâq “ a for any a P BrpKqtpu and sπpχ̂Ypxqq “ χYpūq,
where χ P ChpKqtpu, x P E˚ and u is the unit in E such that x “ uπvpxq.

Moreover, if v is trivial on a subfield k Ď E and φ Ď Chpkqtpu a finite
subgroup, then sπpBrdecpEpφq{Eqq Ď BrdecpKpφq{Kq.
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Remark 4.2.4. For an abelian group A we write pA for the subgroup of all
elements in A of exponent p.

This technical lemma will be used later on.

Lemma 4.2.5. Let pE, vq be a complete discrete valued field with the residue
field K of characteristic different from p containing a primitive p2-th root of
unity. Let η P ChpEq be a character of order p2 such that p ¨ η is unramified,
that is p ¨ η “ ν̂ for some ν P ChpKq of order p. Let χ Pp ChpKq be a character
linearly independent from ν. Let a P BrpKq and set b “ â` pχ̂Y pxqq P BrpEq,
where x P E˚ is an element such that vpxq is not divisible by p. Then
1) If η is unramified, that is η “ µ̂ for some µ P ChpKq of order p2, then
indpbEpηqq “ p ¨ indpaKpµ,χqq

2) If η is ramified, then there exists a unit u P E˚ such that Kpνq “ Kpū1{pq

and indpbEpηqq “ indpa´ pχY pū1{pqqqKpνq.

Proof. (1) If η “ µ̂ for some µ P ChpKq, then Kpµq is the residue field of Epηq
and we have

bEpηq “ âKpµq ` pχ̂Kpµq Y pxqq

As χ and ν are linearly independent, the character χKpµq is nontrivial. The first
statement follows from Proposition 4.2.3 (2).

(2) Since p ¨ η is unramified, the ramification index of Epηq{E is equal to p,

hence Epηq “ Eppuxpq1{p
2

q for some unit u P E. Note that Kpνq “ Kpū1{pq is
the residue field of Epηq. As u1{px is a p-th power in Epηq, the class

bEpηq “ âKpνq ´ pχ̂Kpνq Y pu
1{pqq

is unramified. It follows from Proposition 4.2.3 (1) that the elements bEpηq in

BrpEpηqq and aKpνq ´ pχKpνq Y pū
1{pqq in BrpKpνqq have the same indices.

4.2.2 Brauer group and algebraic tori

Remark 4.2.6. Let S be an algebraic torus over k. We embed S into the
quasi-trivial torus P “ RL{kpGm,Lq, where L in an étale k-algebra and RL{k is
the Weil restriction. Then S acts on the vector space L by multiplication, so
that the action on P is regular. If T is the factor torus P {S, then the S-torsor
P Ñ T is versal.

Let F be a field, φ a subgroup of pChpF q of rank r and L “ F pφq. Let
G “ GalpL{F q and choose a basis χ1, ..., χr of φ. We can view each χi as a
character of G, that is a homomorphism χi : G Ñ Q{Z. Let σ1, ..., σr be the
dual basis for G, that is χipσjq “ pp

1
p ` Zqδij .

We call R the group ring ZrGs. Consider the surjective homomorphism of
G-modules k : Rr Ñ R taking the basis element ei to σi ´ 1; the image of k is
the augmentation ideal I of R. Define Ni the element 1` σi ` σ

2
i ` ¨ ¨ ¨ ` σ

p´1
i

of R, and call N “ kerpkq.
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Lemma 4.2.7. Consider the elements eij “ pσi´1qej´pσj´1qei and fi “ Niei
for i, j “ 1, ..., r. The G-module N is generated by eij and fi.

Proof. See [20, Lemma 3.4].

Now let εi : Rr Ñ Z be the i-th projection followed by the augmentation
map ε. It follows from the lemma that εipNq “ pZ for every i. Moreover, the G-
homomorphism l : N Ñ Zr defined by mÑ pε1pmq{p, ...., εrpmq{pq is surjective.
Set M “ Kerplq and Q “ Rr{M .

Lemma 4.2.8. The G-module M is generated by the eij .

Proof. See [20, Lemma 3.5].

Let Pφ, Sφ, Tφ and V φ be the algebraic tori over F with character G-modules
Rr, Q,M, I and N , respectively.

Let K{F be a field extension and set KL “ K bF L. The exact sequence of
G-modules 0 Ñ I Ñ RÑ Z gives an exact sequence of the tori

1 Ñ Gm Ñ RL{F pGm,Lq Ñ U Ñ 1

Taking cohomology we obtain the exact sequence

0 Ñ H1pK,Uφq Ñ H2pK,Gmq Ñ H2pKL,Gmq

Hence H1pK,Uφq – BrpKL{Kq.

Lemma 4.2.9. The homomorphism pK˚qr Ñ H1pK,Uφq – BrpKL{Kq in-
duced by

Uφ Ñ Sφ Ñ Grm
takes px1, ..., xrq to

řr
i“1ppχiqK Y pxiqq.

Proof. See [20, Lemma 3.6].

Corollary 4.2.10. The map H1pK,Uφq Ñ H1pK,Sφq induces an isomorphism
H1pK,Sφq – BrindpKL{Kq.

The previous Corollary and the triviality of the group H1pK,Pφq give us a
commutative diagram

V pKq //

��

H1pK,Uφq

��

BrpKL{Kq

��
T pKq // H1pK,Sφq BrindpKL{Kq

with surjective homomorphisms.
Consider K “ F pV q and choose an element

a P BrpLpT q{F pT qq (4.2.1)
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corresponding to the generic point of T over F pT q in the above diagram. Con-
sider also the exact sequence of G-modules

0 Ñ L˚ ‘N Ñ LpV q˚ Ñ DivpVLq Ñ 0

Then H2pG,Nq – Z{prZ, see [20] 3.3.

Lemma 4.2.11. If r ě 2, then the class pr´1a in BrpF pT qq does not belong to
the image of BrpF q Ñ BrpF pT qq.

Proof. See [20, Corollary 3.9].

4.2.3 Essential dimension of algebraic tori

Let S be an algebraic torus over F with splitting group G. We assume that
G is a p-group of order pr. Let X be the G-module of characters of S. A
p-presentation of X is a G-homomorphism f : P Ñ X with P a permutation
G-module and finite cokernel of order prime to p. A p-presentation with the
smallest rank is called minimal.

Theorem 4.2.12. Let S be an algebraic torus over F as above and f : P Ñ X
a minimal p-presentation of X. Then edppSq “ rankpKerpfqq.

Proof. See [18, Theorem 1.4].

Corollary 4.2.13. Suppose that X admits a surjective minimal p-presentation
f : P Ñ X. Then edpSq “ edppSq “ rankpKerpfqq.

Proof. A surjective G-homomorphism f yields a generically free representation
of S of dimension rankpP q. Then

edppSq ď edpSq ď rankpP q ´ dimpSq “ rankpKerpfqq

In this subsection we derive from Theorem 4.2.12 an explicit formula for the
essential p-dimension of algebraic tori. Define the group X “ X{ppX ` IXq.
For any subgroup H Ď G, consider the composition XH ãÑ X Ñ X. For every
k, let Vk denote the image of the homomorphism

š

HĎGX
H Ñ X, where the

coproduct is taken over all subgroups H with rG : Hs ď pk. We have the
sequence of subgroups 0 “ V´1 Ď V0 Ď ¨ ¨ ¨ Ď Vr “ X.

Theorem 4.2.14. It holds the following explicit formula for the essential p-
dimension of S:

edppSq “
r

ÿ

k“0

prankVk ´ rankVk´1qp
k ´ dimpSq
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Proof. Set bk “ rankpVkq; by Theorem 4.2.12 it suffices to prove that the small-
est rank of the G-module P in a p-presentation of X is equal to

řr
k“0pbk ´

bk´1qp
k. Let f : P Ñ X be a p-presentation of X and A a G-invariant basis of

P . The set A is the disjoint union of the G-orbits Aj , so that P is the direct
sum of the permutation G-modules ZrAjs. The composition f̄ : P Ñ X Ñ X is
surjective. As G acts trivially on X, the rank of the group f̄pZrAjsq is at most
1 for all j and f̄pZrAjsq Ď Vk if |Aj | ď pk. It follows that the group X{Vk is

generated by the images under the composition P
f̄
Ñ X Ñ X{Vk of all ZrAjs

with |Aj | ą pk. Denote by ck the number of such orbits Aj , so we have

ck ě rankpX̄{Vkq “ br ´ bk

Set c1k “ br ´ ck, so that bk ě c1k for all k and br “ c1r. Since the number of
orbits Aj with |Aj | “ pk is equal to ck´1 ´ ck, we have

rankpP q “
r

ÿ

k“0

pck´1 ´ ckqp
k “

r
ÿ

k“0

pc1k ´ c
1
k´1qp

k

“ c1rp
r `

r´1
ÿ

k“0

c1kpp
k ´ pk`1q ě brp

r `

r´1
ÿ

k“0

bkpp
k ´ pk`1q

“

r
ÿ

k“0

pbk ´ bk´1qp
k

It remains to construct a p-presentation with P of rank
řr
k“0pbk´ bk´1qp

k. For
every k ě 0 choose a subset Xk in X of the pre-image of Vk under the canonical
map X Ñ X with the property that for any x P Vk there is a subgroup Hx Ď G
with x P XHx and rG : Hxs “ pk such that the composition

Xk Ñ Vk Ñ Vk{Vk´1

yields a bijection between Xk and a basis of Vk{Vk´1. In particular |Xk| “

bk ´ bk´1. Call

P “
r

ž

k“0

ž

xPXk

ZrG{Hxs

and consider the G-homomorphism f : P Ñ X taking 1 in ZrG{Hxs to x in
X. By construction, the composition of f with the canonical map X Ñ X is
surjective. As G is a p-group, the ideal pRppq` I of Rppq is the Jacobson radical
of the ring Rppq “ R bZ Zppq. By Nakayama lemma fppq is surjective. Hence
the cokernel of f is finite of order prime to p. The rank of the permutation
G-module P is equal to

r
ÿ

k“0

ÿ

bPBk

pk “
r

ÿ

k“0

|Bk|p
k “

r
ÿ

k“0

pbk ´ bk´1qp
k
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The following computation will be used in the sequel.

Example 4.2.15. Let F be a field, φ a subgroup of pChpF q of rank r, L “ F pφq
and G “ GalpL{F q. We have an exact sequence N Ñ pRqr Ñ Ī Ñ 0. It
follows from Lemma 4.2.7 that N Ď pRr ` Ir, hence the first homomorphism
in the sequence is trivial. The middle group is isomorphic to pZ{pZqr, hence
rankpĪq “ r.

For any subgroupH Ď G, the Tate cohomology group Ĥ0pH, Iq » Ĥ´1pH,Zq
is trivial; it follows that the group IH is generated by NHx for all x P I, where
XH “

ř

hPH h P R. Since Ī is of period p with the trivial G-action, the classes
of the elements NHx in Ī are trivial if H is a nontrivial subgroup of G. It follows
that the maps IH Ñ Ī are trivial for all H ‰ 1. With the previous notation we
have V0 “ ¨ ¨ ¨ “ Vr´1 and Vr “ Ī. By the Theorem 4.2.14

edppU
φq “ rpr ´ dimpUφq “ rpr ´ pr ` 1 “ pr ´ 1qpr ` 1

and the rank of the permutation module in a minimal p-presentation of I is
equal to rpr. Therefore, k : Rr Ñ I is a minimal p-presentation of I that
appears to be surjective. By Corollary 4.2.13,

edpUφq “ edppU
φq “ pr ´ 1qpr ´ 1

Consider now the torus Sφ. The homomorphism k factors through a surjec-
tive map Rr Ñ Q, which is then necessarily a minimal p-presentation of Q.
According to Theorem 4.2.14

edpSφq “ edppS
φq “ rpr ´ dimpSφq “ pr ´ 1qpr ´ r ` 1

4.2.4 Degeneration

Let F be a field, p a prime integer different from charpF q and φ Ďp ChpF q a
finite subgroup. For an natural number k and a field extension K{F , denote

Bφk “ ta P BrpKqtpu such that indpaKpφqq ď pku. On the set Bφk pKq consider
the following equivalence relation: two elements a and a1 are equivalent if and
only if a´a1 P BrdecpKpφq{Kq. Denote by Fφk pKq the set of equivalence classes.

We view Bφk and Fφk as functors from Fields{F to Sets.

Remark 4.2.16. If φ is the zero subgroup, then Fφk “ Bφk » Algpprq »
PGLpprq ´ torsors.

Remark 4.2.17. The set Bφ0 pKq is naturally bijective to BrpKpφq{Kq and

Fφ0 pKq » BrindpKpφq{Kq. By Corollary 4.2.10 the latter group is naturally
isomorphic to H1pK,Sφq.

Let φ1 Ď φ be a subgroup of index p and η P φzφ1. Let E{F be a field

extension such that ηE R φ
1
E in ChpEq. Choose an element a P Bφk pEq. Let E1

be a field extension of F that is complete with respect to a discrete valuation
v1 over F with residue field E and set

a1 “ â` pη̂E Y pxqq P BrpE
1q
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for some x P E1
˚

such that v1pxq is not divisible by p. By Proposition 4.2.3 (2)

indpaE1pφ1qq “ p ¨ indpaEpφqq ď pk`1, hence a1 P Bφ
1

k`1pE
1q.

Proposition 4.2.18. Suppose that for any finite field extension N{E of degree
prime to p and any character ρ P ChpNq of order p2 such that p ¨ ρ P φNzφ

1
N ,

we have indpaNpφ1,ρqq ą pk´1. Then

ed
Fφ

1

k`1
p pa1q ě ed

Fφk
p paq ` 1

Proof. Let M{E1 be a finite field extension of degree prime to p, M0 Ď M

a subfield over F and a10 P Bφ
1

k`1pM0q such that pa10qM “ a1M in Fφk and

tr.degF pM0q “ ed
Fφ

1

k`1
p pa1q. We have

a1M ´ pa10qM P BrdecpMpφ
1q{Mq (4.2.2)

We also have
a1M “ âN ` pη̂N Y pxqq (4.2.3)

and Bv1pa
1q “ q ¨ηE , where q “ v1pxq is relatively prime to p. Extend the discrete

valuation v1 on E1 to a unique discrete valuation v on M . The ramification index
e1 and inertia degree are both prime to p, thus the residue field N of v is a finite
extension of E of degree prime to p. By Proposition 4.2.3 (3)

Bvpa
1
M q “ e1 ¨ Bv1pa

1q “ e1q ¨ ηN

Let v0 be the restriction of v to M0 and N0 its residue field. It follows from
4.2.2 that

Bvpa
1
M q ´ Bvppa

1
0qM q P φ

1
N

Recall that ηE R φ
1
E ; as rN : Es is not divisible by p, it follows that ηN R φ

1
N . By

the preceding, Bvppa
1
0qM q ‰ 0, which means that pa10qM is ramified and therefore

v0 is nontrivial, so that v0 is a discrete valuation on M0.
Let η0 “ Bv0pa

1
0q P ChpN0qtpu. By Proposition 4.2.3 we have

Bvppa
1
0qM q “ e ¨ pη0qN

where e is the ramification index of M{M0, hence pη0qN ‰ 0. It follows from
the preceding that

e1q ¨ ηN ´ e ¨ pη0qN P φ
1
N

As e1q is relatively prime to p, ηN P xφ
1
N , pη0qN y in ChpNq. Let pt be the order

of pη0qN . It holds that vppeq “ t´ 1 and

pt´1 ¨ pη0qN P φNzφ
1
N

Choose a prime element π0 in M0 and write

pa10qM̂0
“ â0 ` pη̂0 Y pπ0qq
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in BrpM̂0q, where a0 P BrpN0qp.
Applying the specialization homomorphism sπ : BrpMqp Ñ BrpNqp to

4.2.2, 4.2.3 and the previous relation, we get

aN ´ pa0qN P BrdecpNpφ
1, η0q{Nq

It follows that aNpφ1,η0q “ pa0qNpφ1,η0q in BrpNpφ1, η0qq. We have

pa10qM̂0pφ1q
“ ˆpa0qN0pφ1q

` p ˆpη0qN0pφ1q
Y pπ0qq

As no nontrivial multiple of pη0qN belongs to φ1N , the order of the character
pη0qN0pφ1q is at least pt. It follows from Proposition 4.2.3 (2) that

indpa0qN0pφ1,η0q “ indpa10qM̂0pφ1q
{ordpη0qN0pφ1q ď pk`1{pt “ pk´t`1

By the previous relations, we have indpaNpφ1,η0qq ď pk´t`1.
Suppose that t ě 2 and consider the character ρ “ pt´2 ¨ pη0qN of order p2

in ChpNq. We have p ¨ ρ “ pt´1pη0qN P φNzφ
1
N . Moreover, the degree of the

field extension Npφ1, η0q{Npφ
1, ρq is equal to pt´2. Hence

indpaNpφ1,ρqq ď indpaNpφ1,η0qq ¨ p
t´2 ď pk´t`1 ¨ pt´2 “ pk´1

This contradicts the assumption, therefore t “ 1, which means ordpη0qN “ p.
Then e and p are coprime and it follows that pη0qN P xφ1N , ηN y. Moreover,
xφ1, η0yN “ xφ1, ηyN “ φN . By Lemma 4.2.2, there is a finite subextension
N1{N0 of N{N0 such that xφ1, η0yN1 “ φN1 . Replacing N0 by N1 and a0 by
pa0qN1 , we may assume that xφ1, η0yN0 “ φN0 . In particular, η0 is of order p in
ChpN0q. Now

indpa0qN0pφq “ indpa0qN0pφ1,η0q ď pk

so we have a0 P B
φ
k pN0q.

It follows that
aN ´ pa0qN P BrdecpNpφq{Nq

hence the classes of aN and pa0qN are equal in Fφk pNq. The class of aN in

Fφk pNq is then defined over N0, therefore

ed
Fφ

1

k`1
p pa1q “ tr.degF pM0q ě tr.degF pN0q ` 1 ě ed

Fφk
p paq ` 1

4.2.5 Multiple degeneration

In this subsection assume that the base field F contains a primitive p2-th root of
unity. Let φ be a subgroup in pChpF q of rank r and choose a basis χ1, ..., χr of
φ. Let E{F be a field extension such that rankpφEq “ r and let a P BrpEqtpu
be an element that is split by Epφq. Let E0 “ E,E1, ..., Er be field extensions
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of F such that for any k “ 1, 2, ..., r, the field Ek is complete with respect to
a discrete valuation vk over G and Ek´1 is its residue field. For any k choose
elements xk P E

˚
k such that vkpxkq is not divisible by p and define the elements

ak P BrpEkqtpu inductively by a0 “ a and ak “ ˆak´1 ` p
ˆpχkEk´1

Y pxkqq. Let
φk be the subgroup of φ generated by χk`1, ..., χr. Thus, φ0 “ φ, φr “ 0 and
rankpφkq “ r´ k. Note that the character pχkqEk´epφkq is not trivial. It follows
from Proposition 4.2.3 that

indpakqEkpφkq “ p ¨ indpak´1qEk´1pφk´1q

for any k. As indpaEpφqq “ 1, we have indpakqEkpφkq “ pk for all k; in particular

ak P B
φk
k pEkq.

The following lemma gives conditions on the element a such that the hy-
pothesis of Proposition 4.2.18 are satisfied.

Lemma 4.2.19. Suppose that pr´1a R ImpBrpF q Ñ BrpEqq. Then for every
k “ 0, 1, ..., r and any finite field extension N{Ek if degree prime to p and any
character ρ P ChpNq of order p2 such that p ¨ ρ P pφkqNzpφk`1qN , we have

indpakqNpφk`1,ρq ą pk´1 (4.2.4)

Proof. Let’s proceed by inductions on r; the case r “ 1 is trivial. Suppose that
the inequality does not hold for some k, a finite extension N{Ek and a character
ρ P ChpNq. Suppose first that k ă r ´ 1, consider the fields F 1 “ F pφk`1q,
E1 “ Epφk`1q, E

1
i “ Eipφk`1q, N

1 “ Npφk`1q, the sequence of characters
pχiqF 1 and the sequence of elements a1i “ paiqE1i P BrpEiq for i “ 0, 1, ..., k ` 1.
As pa1kqN 1pρq “ pakqNpφk`1,ρq, the inequality does not hold for the term a1k of
the new sequence, the field extension N 1{E1k and the character ρ1N . Note that
pkaE1 R ImpBrpF

1q Ñ BrpE1qq, because otherwise, taking the norm map for the
extension F 1{F of degree pr´k´1 we would get pr´1a P ImpBrpF q Ñ BrpEqq.
By induction, the inequality 4.2.4 holds for all the terms of the new sequence,
in particular for a1k, a contradiction.

Thus we can assume that k “ r ´ 1. We construct a new sequence of fields
Ẽ0, Ẽ1, ..., Ẽr such that each Ẽi is a finite extension of Ẽi of degree prime to
p as follows. We set Ẽr´1 “ N and let Ẽr be an unramified extension of Er
with the residue field Ẽr´1. The fields Ẽj with j ă r ´ 1 are constructed by

descending induction on j. If we have constructed Ẽj as a finite extension of

Ej of degree prime to p, then we extend the valuation vj to Ẽj and let Ẽj´1 to

be its residue field. Replacing Ei by Ẽi and ai by paiqẼi , we may assume that
N “ Er´1.

Suppose that the character ρ is unramified with respect to vr´1, that is ρ “ µ̂
for a character µ P ChpEr´2q of order p2. By Lemma 4.2.5 (1)

indpar´2qEr´2pχr´1,µq “ indpar´1qEr´1pρq{p “ indpar´1qEr´1pφr,ρq{p ď pr´3

Consider the fields F 1 “ F pχr´1q, E
1 “ Epχr´1q, E

1
i “ Eipχr´1q, N

1 “

Npχr´1q, the sequence of characters χ1, ..., χr´2, χr and the elements a1i P
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BrpE1iq for i “ 0, 1, ..., r ´ 1 defined by a1i “ paiqE1i for i ď r ´ 2 and a1r´1 “

âr´2 ` pχ̂r Y pxr´1qq over E1r´1. As pa1r´2qN 1pµq “ par´2qNpχr´1,ρq, the in-
equality above shows that the result does not hold for the term a1r´2 of the
new sequence, the field extension N 1{E1r´2 and the character µ1N . Note that
pr´2aE1 R ImpBrpF

1q Ñ BrpE1qq, as otherwise, taking the norm map for the
extension F 1{F of degree p, we get pr´1a P ImpBrpF q Ñ BrpEqq. By induc-
tion, the result holds for all the terms of the new sequence, in particular for
a1r´2, a contradiction.

Suppose now that ρ is ramified. Note that p ¨ ρ is a nonzero multiple of
pχrqEr´1

. As the result fails for ar´1, we have indpar´1qEr´1pρq ď pr´2. By

Lemma 4.2.5 (2), there exists a unit u P Er´1 such that Er´2pχrq “ Er´2pū
1{pq

and

indpar´2 ´ pχr´1 Y pū
1{pqqqEr´2pχrq “ indpar´1qEr´1pρq ď pr´2

By descending induction on j we show that there exists a unit uj in Ej`1 and
a subgroup θj Ď φ of rank r ´ j ´ 1 such that xχ1, ..., χj , χr´1y X θj “ 0,

Ejpχrq “ Ejpū
1{p
j q and

indpaj ´ pχr´1 Y pū
1{p
j qqqEjpθj ď pj (4.2.5)

If j “ r´ 2, we set uj “ u and θj “ tχru. Let us prove the inductive step. The

field Ejpū
1{p
j q “ Ejpχrq is unramified over Ej , hence vjpūjq is divisible by p.

Modifying uj by a p2-th power, we may assume that ūj “ uj´1x
mp
j for a unit

uj´1 P Ej and an integer m. Then

paj ´ pχr´1 Y pū
1{p
j qqqEjpθjq “ b̂` pη̂ Y pxjqqEjpθjq

where η “ χj´mχr´1 and b “ paj´1´pχr´1Ypū
1{p
j´1qqqEj´1pθjq. As η is not con-

tained in θj , the character ηEj´1pθjq is not trivial. Set θj´1 “ xθj , ηy; it follows

from Proposition 4.2.3 (2) that indpbEj´1pθj´1q “ paj´pχr´1Ypū
1{p
j qqqEjpθjq{p ď

pj´1. Applying the inequality 4.2.5 in the case j “ 0, we get

aEpθ0q “ pχr´1 Y pw
1{pqqEpθ0q

for an element w P E˚ such that Epw1{pq “ Epχrq. The degree of the extension
Epθ0q{E is equal to pr´1 and Epw1{pq Ď Epθ0q. Taking norm for the extension
Epθ0q{E, we get that pr´1a is a multiple of χr´1 Y pwq. As the character χr
is defined over F , we may assume that w P F˚, hence pr´1a P ImpBrpF q Ñ
BrpEqq, a contradiction.

Corollary 4.2.20. Suppose that pr´1a R ImpBrpF q Ñ BrpEqq. Then

edAlgpp
r
q

p parq ě edS
φ
´torsors

p paq ` r
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Proof. By iterated application of Proposition 4.2.18 and by Example 4.2.15 we
have

edAlgpp
r
q

p parq “ ed
Fφrr
p parq ě ed

F
φr´1
r´1
p par´1q ` 1 ě ¨ ¨ ¨

ě ed
F
φ1
1
p pa1q ` pr ´ 1q ě ed

F
φ0
0
p ` r “ ed

Sφ´torsors
p paq ` r

Theorem 4.2.21. Let F be a field and p an integer different from charpF q.
Then

edppAlgF pp
rqq ě pr ´ 1qpr ` 1

Proof. As edppAlgF pp
rqq ě edppAlgF 1pp

rqq for any field extension F 1{F , we can
replace F by any field extension. In particular, we may assume that F contains
a primitive p2-th root of unity and there is a subgroup φ of pChpF q of rank r.
Let Tφ be the algebraic torus constructed in the section about algebraic tori.
Set E “ F pTφq and let a P BrpEL{Eq be the element defined in 4.2.1. Let
ar P BrpErq be the element of index pr constructed in the beginning of the
subsetcion. By Lemma 4.2.11 the class pr´1a in BrpEq does not belong to the
image of the map BrpF q Ñ BrpEq. It follows from the previous Corollary that

edAlgpp
r
q

p parq ě edS
φ
´torsors

p paq ` r

The Sφ-torsor a is the generic fiber of the versal Sφ-torsor Pφ Ñ Sφ, hence a
is a generic torsor (see Remark 4.2.6). Then

edS
φ
´torsors

p paq “ edppS
φq

The essential p-dimension of Sφ is given by edppS
φq “ pr´1qpr´r`1. Putting

all the results together, we have the thesis.

Corollary 4.2.22. Let k a field of characteristic different from p. Then

edppPGLp2q “ p2 ` 1

Proof. This follows directly by the previous Theorem and Corollary 4.1.19.
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